一、本文介绍
本文记录的是基于CPCA模块的YOLOv10目标检测改进方法研究。
CPCA(Channel Prior Convolutional Attention)通道先验卷积注意力
认为通道与空间维度的联合注意力有助于更精准地捕捉目标特征,并且解决了现有注意力机制在处理复杂场景目标检测时自适应能力不足的问题。在改进YOLOv10
的过程中能够为特征图动态分配通道和空间维度的注意力权重,有效增强网络对目标的特征提取能力,同时还降低了计算复杂度,便于集成到网络中。
专栏目录:YOLOv10改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进