论文必备 - YOLOv11统计数据集中大、中、小目标数量,附完整代码和详细使用步骤

前言

在寻找创新点之前,我们需要更加了解我们数据集的构成,这样才更方便我们找到合适有效的创新点,而不是直接拿来模块就开始跑。

除了数据集的数量,类别其中目标的大小也非常重要,这也就是我们经常可以看到一些论文是针对小目标进行改进的,一些模块是考虑全局信息的,如何准确的使用这些模块,就和你数据集中的目标大小分布有关系了。

例如这篇论文中的统计,小目标偏多:
在这里插入图片描述

了解到这一点,才更方便的进行模型改进,才有了改进方向,而如何统计出自己数据集中,目标的大、中、小数据量,就是这次的内容。


专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

专栏地址:YOLOv11改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

一、MS COCO 数据集介绍

MS COCO(Microsoft Common Objects in Context)数据集是由微软开发维护的大型图像数据集。数据集标注类型对应任务包括物体检测、关键点检测、实例分割、 stuff分割(没有特定形状的物体),全景分割人体关键点, 人体密度检测等。

官网https://cocodataset.org/

数据规模和样本特点

  • 数据规模大:总共包含 32.8 万张图像)。其中标注过的图像超过 20 万张,拥有 150 万个目标实例,数据量丰富,能够为模型训练提供充足的信息。

在这里插入图片描述

  • 类别丰富:包含 80 个目标类别和 91 个“stuff”类别。目标类别涵盖了日常生活中常见的各种物体,如人、动物、交通工具、生活用品等;“stuff”类别则包括了一些没有明确边界的材料和
基于YOLOv9实现牛识别检测计数系统python源码+详细运行教程+训练好的模型+评估指标曲线.zip 【使用教程】 一、环境配置 1、建议下载anacondapycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anacondapycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据) 1、数据准备 需要准备yolo格式的目标检测数据,如果不清楚yolo数据格式,或者有其他数据训练需求,请看博主yolo格式各种数据合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据,且在不断更新,基本都是实际项目使用。来自于网上收、实际场景采制作等,自己使用labelimg标注工具标注的。数据质量绝对有保证! 本项目所使用数据,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练的图片路径 val:验证的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【特别说明】 *项目内容完全原创,请勿对项目进行外传,或者进行违法等商业行为! 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值