前言
在寻找创新点之前,我们需要更加了解我们数据集的构成,这样才更方便我们找到合适有效的创新点,而不是直接拿来模块就开始跑。
除了数据集的数量,类别其中目标的大小也非常重要,这也就是我们经常可以看到一些论文是针对小目标进行改进的,一些模块是考虑全局信息的,如何准确的使用这些模块,就和你数据集中的目标大小分布有关系了。
例如这篇论文中的统计,小目标偏多:

了解到这一点,才更方便的进行模型改进,才有了改进方向,而如何统计出自己数据集中,目标的大、中、小数据量,就是这次的内容。
专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
文章目录
一、MS COCO 数据集介绍
MS COCO(Microsoft Common Objects in Context)数据集是由微软开发维护的大型图像数据集。数据集标注类型对应任务包括物体检测、关键点检测、实例分割、 stuff分割(没有特定形状的物体),全景分割人体关键点, 人体密度检测等。
数据规模和样本特点:
- 数据规模大:总共包含 32.8 万张图像)。其中标注过的图像超过 20 万张,拥有 150 万个目标实例,数据量丰富,能够为模型训练提供充足的信息。

- 类别丰富:包含 80 个目标类别和 91 个“
stuff”类别。目标类别涵盖了日常生活中常见的各种物体,如人、动物、交通工具、生活用品等;“stuff”类别则包括了一些没有明确边界的材料和
订阅专栏 解锁全文
580

被折叠的 条评论
为什么被折叠?



