YOLOv11改进策略【注意力机制篇】| 引入SimAM注意力模块(一个简单的,无参数的卷积神经网络注意模块)

一、本文介绍

本文记录的是基于SimAM注意力模块的YOLOv11目标检测方法研究SimAM注意力模块通过优化能量函数来获得每个神经元的三维权重,而无需引入额外的参数或增加计算复杂度。若是有轻量化需求的小伙伴,无参的注意力模块也许是一个不错的选择。


二、SimAM注意力原理

SimAM(A Simple, Parameter-Free Attention Module for Convolutional Neural Networks)是一种简单且无参数的注意力模块,主要用于卷积神经网络。

2.1、原理

  1. 基于神经科学理论定义能量函数
    • 在视觉神经科学中,最具信息量的神经元通常是那些与周围神经元具有不同激发模式的神经元。并且,一个活跃的神经元可能会抑制周围神经元的活动,这种现象被称为空间抑制
    • 基于此,SimAM为每个神经元定义了如下能量函数 e t ( w t , b t , y , x i ) = ( y t − t ^ ) 2 + 1 M − 1 ∑ i = 1 M − 1 ( y o − x ^ i ) 2 e_{t}\left(w_{t}, b_{t}, y, x_{i}\right)=\left(y_{t}-\hat{t}\right)^{2}+\frac{1}{M - 1} \sum_{i = 1}^{M - 1}\left(y_{o}-\hat{x}_{i}\right)^{2} et(wt,bt,y,xi)=(ytt^)2+M11i=1M1(yox^i)2,其中 t ^ = w t t + b t \hat{t}=w_{t}t + b_{t} t^=wtt+bt x ^ i = w t x i + b t \hat{x}_{i}=w_{t}x_{i}+b_{t} x^i=wtxi+bt是线性变换, t t t x i x_{i} xi是输入特征 X ∈ R C × H × W X\in R^{C\times H\times W} XRC×H×W单个通道中的目标神经元和其他神经元。 i i i是空间维度上的索引, M = H × W M = H\times W M=H×W是该通道上的神经元数量。 w t w_{t} wt b t b_{t} bt是线性变换的权重和偏置。
    • 为了简化计算,采用二进制标签(即 1 和 -1)用于 y t y_{t} yt y o y_{o} yo,并添加一个正则项,最终的能量函数为:
      e t ( w t , b t , y , x i ) = 1 M − 1 ∑ i = 1 M − 1 ( − 1 − ( w t x i + b t ) ) 2 + ( 1 − ( w t t + b t ) ) 2 + λ w t 2 e_{t}\left(w_{t}, b_{t}, y, x_{i}\right)=\frac{1}{M - 1} \sum_{i = 1}^{M - 1}\left(-1-\left(w_{t}x_{i}+b_{t}\right)\right)^{2}+\left(1-\left(w_{t}t+b_{t}\right)\right)^{2}+\lambda w_{t}^{2} et(wt,bt,y,xi)=M11i=1M1(1(wtxi+bt))2+(1(wtt+bt))2+λwt2
  2. 推导能量函数的闭式解
    • 通过对上述能量函数求解,得到关于 w t w_{t} wt b t b_{t} bt的闭式解为: w t = − 2 ( t − μ t ) ( t − μ t ) 2 + 2 σ t 2 + 2 λ w_{t}=-\frac{2\left(t-\mu_{t}\right)}{\left(t-\mu_{t}\right)^{2}+2\sigma_{t}^{2}+2\lambda} wt=(tμt)2+2σt2+2λ2(tμt) b t = − 1 2 ( t + μ t ) w t b_{t}=-\frac{1}{2}\left(t+\mu_{t}\right)w_{t} bt=21(t+μt)wt。其中 μ t = 1 M − 1 ∑ i x i \mu_{t}=\frac{1}{M - 1}\sum_{i}x_{i} μt=M11ixi σ t = 1 M − 1 ∑ i ( x i − μ t ) 2 \sigma_{t}=\sqrt{\frac{1}{M - 1}\sum_{i}\left(x_{i}-\mu_{t}\right)^{2}} σt=M11i(xiμt)2 是该通道上除(t)以外所有神经元的均值和方差。
    • 由于上述解是在单个通道上得到的,假设单个通道中的所有像素遵循相同的分布,那么可以对所有神经元计算一次均值和方差,并在该通道上重复使用,得到最小能量计算公式: e t ∗ = 4 ( σ ^ 2 + λ ) ( t − μ ^ ) 2 + 2 σ ^ 2 + 2 λ e_{t}^{*}=\frac{4\left(\hat{\sigma}^{2}+\lambda\right)}{(t-\hat{\mu})^{2}+2\hat{\sigma}^{2}+2\lambda} et=(tμ^)2+2σ^2+2λ4(σ^2+λ),其中 μ ^ = 1 M ∑ i x i \hat{\mu}=\frac{1}{M}\sum_{i}x_{i} μ^=M1ixi σ ^ 2 = 1 M ∑ i ( x i − μ ^ ) 2 \hat{\sigma}^{2}=\frac{1}{M}\sum_{i}\left(x_{i}-\hat{\mu}\right)^{2} σ^2=M1i(xiμ^)2
    • 能量 e t ∗ e_{t}^{*} et越低,神经元 t t t与周围神经元的区别就越大,在视觉处理中就越重要。因此,每个神经元的重要性可以通过 1 / e t ∗ 1/e_{t}^{*} 1/et获得。
  3. 注意力模块的特征细化
    • 根据哺乳动物大脑中的注意力调制通常表现为对神经元响应的增益效应,SimAM使用缩放运算符而不是加法来进行特征细化。整个模块的细化阶段公式为: X ~ = sigmoid ( 1 E ) ⊙ X \tilde{X}=\text{sigmoid}\left(\frac{1}{E}\right)\odot X X~=sigmoid(E1)X,其 E E E是所有通道和空间维度上的 e t ∗ e_{t}^{*} et的集合, sigmoid \text{sigmoid} sigmoid函数用于限制 E E E中的值过大,它是一个单调函数,不会影响每个神经元的相对重要性。

在这里插入图片描述

2.2、优势

  1. 全三维注意力权重
    • 与现有的注意力模块不同,SimAM可以直接推断出全三维注意力权重,同时考虑空间和通道维度,而不是只沿通道或空间维度生成一维或二维权重。这使得网络能够学习到更具判别性的特征,更好地捕捉图像中的有价值线索,与图像标签更加一致。
  2. 基于神经科学理论,可解释性强
    • SimAM基于神经科学理论设计,其实现注意力的方式是估计单个神经元的重要性,这种方法来源于对哺乳动物大脑中视觉处理机制的理解,具有较强的可解释性。相比其他大多基于启发式方法计算注意力权重的模块,SimAM更加科学合理。
  3. 参数自由
    • SimAM通过推导能量函数的闭式解,实现了无需向原始网络添加额外参数的特性。这在实际应用中具有很大的优势,轻量化,不会增加模型的复杂度和计算负担,同时能够有效地提升各种卷积神经网络在不同视觉任务中的表现。

论文:https://proceedings.mlr.press/v139/yang21o/yang21o.pdf
源码:https://github.com/ZjjConan/SimAM

三、SimAM的实现代码

SimAM模块的实现代码如下:

class SimAM(torch.nn.Module):
    def __init__(self, channels = None,out_channels = None, e_lambda = 1e-4):
        super(SimAM, self).__init__()
        self.activaton = nn.Sigmoid()
        self.e_lambda = e_lambda

    def __repr__(self):
        s = self.__class__.__name__ + '('
        s += ('lambda=%f)' % self.e_lambda)
        return s

    @staticmethod
    def get_module_name():
        return "simam"

    def forward(self, x):
        b, c, h, w = x.size()
        n = w * h - 1
        x_minus_mu_square = (x - x.mean(dim=[2,3], keepdim=True)).pow(2)
        y = x_minus_mu_square / (4 * (x_minus_mu_square.sum(dim=[2,3], keepdim=True) / n + self.e_lambda)) + 0.5

        return x * self.activaton(y) 


四、创新模块

4.1 改进点1

模块改进方法1️⃣:直接加入SimAM模块
SimAM模块添加后如下:

在这里插入图片描述

注意❗:在5.2和5.3小节中需要声明的模块名称为:SimAM

4.2 改进点2⭐

模块改进方法2️⃣:基于SimAM模块C3k2

相较方法一中的直接插入注意力模块,利用注意力模块对卷积等其他模块进行改进,其新颖程度会更高一些,训练精度可能会表现的更高。

第二种改进方法是对YOLOv11中的C3k2模块进行改进。此处的改进方法是在C2f模块的输出结果中,利用SimAM将分流融合后的特征信息再一次利用注意力加权,且使用SimAM注意力模块不会增加模型参数。

改进代码如下:

首先添加如下代码改进C2f模块,并重命名为C2f_NAM

class C2f_SimAM(nn.Module):
    """Faster Implementation of CSP Bottleneck with 2 convolutions."""

    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
        """Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
        expansion.
        """
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
        self.att = SimAM(c2)

    def forward(self, x):
        """Forward pass through C2f layer."""
        y = list(self.cv1(x).chunk(2, 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.att(self.cv2(torch.cat(y, 1)))

    def forward_split(self, x):
        """Forward pass using split() instead of chunk()."""
        y = list(self.cv1(x).split((self.c, self.c), 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.att(self.cv2(torch.cat(y, 1)))

在这里插入图片描述
再添加如下代码让C3k2继承于C2f_SimAM,并重命名为C3k2_SimAM

class C3k2_SimAM(C2f_SimAM):
    """Faster Implementation of CSP Bottleneck with 2 convolutions."""

    def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True):
        """Initializes the C3k2 module, a faster CSP Bottleneck with 2 convolutions and optional C3k blocks."""
        super().__init__(c1, c2, n, shortcut, g, e)
        self.m = nn.ModuleList(
            C3k(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck(self.c, self.c, shortcut, g) for _ in range(n)
        )

在这里插入图片描述

注意❗:在5.2和5.3小节中需要声明的模块名称为:C3k2_SimAM


五、添加步骤

5.1 修改ultralytics/nn/modules/block.py

此处需要修改的文件是ultralytics/nn/modules/block.py

block.py中定义了网络结构的通用模块,我们想要加入新的模块就只需要将模块代码放到这个文件内即可。

SimAMC3k2_SimAM模块代码添加到此文件下。

5.2 修改ultralytics/nn/modules/init.py

此处需要修改的文件是ultralytics/nn/modules/__init__.py

__init__.py文件中定义了所有模块的初始化,我们只需要将block.py中的新的模块命添加到对应的函数即可。

SimAMC2f_SimAMblock.py中实现,所有要添加在from .block import

from .block import (
    C1,
    C2,
    ...
    SimAM,
    C3k2_SimAM
)

在这里插入图片描述

5.3 修改ultralytics/nn/modules/tasks.py

tasks.py文件中,需要在两处位置添加各模块类名称。

首先:在函数声明中引入SimAMC3k2_SimAM

在这里插入图片描述

在这里插入图片描述

其次:在parse_model函数中注册SimAMC3k2_SimAM模块

在这里插入图片描述

在这里插入图片描述


六、yaml模型文件

6.1 模型改进版本一

在代码配置完成后,配置模型的YAML文件。

此处以ultralytics/cfg/models/11/yolov11m.yaml为例,在同目录下创建一个用于自己数据集训练的模型文件yolov11m-SimAM.yaml

yolov11m.yaml中的内容复制到yolov11m-SimAM.yaml文件下,修改nc数量等于自己数据中目标的数量。
在骨干网络中添加SimAM模块,只需要填入一个参数,通道数,和前一层通道数一致。还需要注意的是,由于PAN+FPN的颈部模型结构存在,层之间的匹配也要记得修改,维度要匹配上。

📌 放在此处的目的是让网络能够学习到更深层的语义信息,因为此时特征图尺寸小,包含全局信息。若是希望网络能够更加关注局部信息,可尝试将注意力模块添加到网络的浅层。

📌 当然由于其即插即用的特性,加在哪里都是可以的,但是想要真的有效,还需要根据模型结构,数据集特性等多方面因素,多做实验进行验证。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# yolo task=detect mode=train model=yolov11m.yaml data=data.yaml device=0 epochs=300 batch=16 imgsz=640 workers=10

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SimAM, [1024]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 14], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 11], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)

  - [[17, 20, 23], 1, Detect, [nc]] # Detect(P3, P4, P5)


6.2 模型改进版本二⭐

此处同样以ultralytics/cfg/models/11/yolov11m.yaml为例,在同目录下创建一个用于自己数据集训练的模型文件yolov11m-C3k2_SimAM.yaml

yolov11m.yaml中的内容复制到yolov11m-C3k2_SimAM.yaml文件下,修改nc数量等于自己数据中目标的数量。

📌 模型的修改方法是将骨干网络中的所有C3k2模块替换成C3k2_SimAM模块使模型可以更早地聚焦于重要信息,避免在初始阶段引入过多无关或冗余特征,并且不同层之间的特征传递更加协调和有针对性,进一步加强模型性能。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# yolo task=detect mode=train model=yolov11m.yaml data=data.yaml device=0 epochs=300 batch=16 imgsz=640 workers=10

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2_SimAM, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2_SimAM, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2_SimAM, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2_SimAM, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)

  - [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)



七、成功运行结果

分别打印网络模型可以看到SimAM模块C3k2_SimAM已经加入到模型中,并可以进行训练了。

YOLOv11m-SimAM

                   from  n    params  module                                       arguments                     
  0                  -1  1      1856  ultralytics.nn.modules.conv.Conv             [3, 64, 3, 2]                 
  1                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]               
  2                  -1  1    111872  ultralytics.nn.modules.block.C3k2            [128, 256, 1, True, 0.25]     
  3                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
  4                  -1  1    444928  ultralytics.nn.modules.block.C3k2            [256, 512, 1, True, 0.25]     
  5                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]              
  6                  -1  1   1380352  ultralytics.nn.modules.block.C3k2            [512, 512, 1, True]           
  7                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]              
  8                  -1  1   1380352  ultralytics.nn.modules.block.C3k2            [512, 512, 1, True]           
  9                  -1  1         0  ultralytics.nn.modules.block.SimAM           [512, 512]                    
 10                  -1  1    656896  ultralytics.nn.modules.block.SPPF            [512, 512, 5]                 
 11                  -1  1    990976  ultralytics.nn.modules.block.C2PSA           [512, 512, 1]                 
 12                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 13             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 14                  -1  1   1642496  ultralytics.nn.modules.block.C3k2            [1024, 512, 1, True]          
 15                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 16             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 17                  -1  1    542720  ultralytics.nn.modules.block.C3k2            [1024, 256, 1, True]          
 18                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 19            [-1, 14]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 20                  -1  1   1511424  ultralytics.nn.modules.block.C3k2            [768, 512, 1, True]           
 21                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]              
 22            [-1, 11]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 23                  -1  1   1642496  ultralytics.nn.modules.block.C3k2            [1024, 512, 1, True]          
 24        [17, 20, 23]  1   1411795  ultralytics.nn.modules.head.Detect           [1, [256, 512, 512]]          
YOLOv11m-SimAM summary: 411 layers, 20,053,779 parameters, 20,053,763 gradients, 68.2 GFLOPs

YOLOv11m-C3k2_SimAM

                   from  n    params  module                                       arguments                     
  0                  -1  1      1856  ultralytics.nn.modules.conv.Conv             [3, 64, 3, 2]                 
  1                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]               
  2                  -1  1     99328  ultralytics.nn.modules.block.C3k2_SimAM      [128, 256, False, 0.25]       
  3                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
  4                  -1  1    395264  ultralytics.nn.modules.block.C3k2_SimAM      [256, 512, False, 0.25]       
  5                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]              
  6                  -1  1   1248000  ultralytics.nn.modules.block.C3k2_SimAM      [512, 512, True]              
  7                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]              
  8                  -1  1   1248000  ultralytics.nn.modules.block.C3k2_SimAM      [512, 512, True]              
  9                  -1  1    656896  ultralytics.nn.modules.block.SPPF            [512, 512, 5]                 
 10                  -1  1    990976  ultralytics.nn.modules.block.C2PSA           [512, 512, 1]                 
 11                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 12             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 13                  -1  1   1642496  ultralytics.nn.modules.block.C3k2            [1024, 512, 1, True]          
 14                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 15             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 16                  -1  1    542720  ultralytics.nn.modules.block.C3k2            [1024, 256, 1, True]          
 17                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 18            [-1, 13]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 19                  -1  1   1511424  ultralytics.nn.modules.block.C3k2            [768, 512, 1, True]           
 20                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]              
 21            [-1, 10]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 22                  -1  1   1642496  ultralytics.nn.modules.block.C3k2            [1024, 512, 1, True]          
 23        [16, 19, 22]  1   1411795  ultralytics.nn.modules.head.Detect           [1, [256, 512, 512]]          
YOLOv11m-C3k2_SimAM summary: 331 layers, 19,726,867 parameters, 19,726,851 gradients, 66.4 GFLOPs
### 回答1: 引入SiMaN注意力机制后,YOLOv7的参数量和计算量都有所增加。具体来说,SiMaN注意力机制引入了两个额外的可训练参数,分别用于计算注意力图的权重和偏置,这导致了参数量的增加。同时,由于要计算注意力图,需要在每个特征图上进行卷积操作,这也增加了计算量。不过,这种注意力机制可以有效地提高目标检测的性能,特别是在处理小目标时。因此,虽然参数量和计算量增加了,但是模型性能也有所提高。 ### 回答2: YOLOv7 引入SiMaM(Scaled Maximum Attention Module)注意力机制,该注意力机制可以帮助模型更加准确地定位目标并提高检测性能。 在参数量方面,SiMaM注意力机制YOLOv7中引入了一些额外的参数。具体来说,SiMaM模块由一系列卷积层和注意力模块组成,其中注意力模块包括一些线性变换、激活函数和全局平均池化等操作,这些操作带来了一些额外的可学习参数。 在计算量方面,SiMaM注意力机制引入了额外的计算开销。由于注意力模块包含了一些额外的卷积、线性变换和池化操作,这些操作会增加模型的计算量。因此,引入SiMaM注意力机制后,YOLOv7的计算量相比于之前的版本会有一定的增加。 尽管引入了一定的额外参数和计算开销,但是SiMaM注意力机制YOLOv7中的应用可以有效提升目标定位的准确性和检测性能。通过对目标特征进行自适应调整和加权,SiMaM可以提高模型对目标的关注度,并使得模型更具有目标感知性。这种提升在一些复杂的场景下尤为明显,可以提高目标检测的精度和鲁棒性。 总之,尽管引入SiMaM注意力机制会带来一些额外的参数和计算开销,但是它对于YOLOv7模型的性能提升是非常有益的。在目标定位的准确性和检测性能上,SiMaM可以显著改善模型的表现,提高目标检测的准确率和可靠性。 ### 回答3: YOLOv7是YOLO系列目标检测算法的最新版本,在YOLOv7中引入SIMAM注意力机制,以改进检测准确性。SIMAM注意力机制能够帮助模型更好地关注重要的目标区域,提升检测性能。 引入SIMAM注意力机制会对参数量和计算量产生一定程度的变化。具体来说,引入SIMAM注意力机制会增加一些额外的参数用于计算注意力权重和特征映射,因此会导致参数量的增加。这些额外的参数可以通过训练过程中学习到,以适应不同的目标检测任务。 同时,引入SIMAM注意力机制还会增加一定的计算量。因为注意力权重的计算需要额外的操作,需要对特征映射进行一定的处理和加权,从而得到更加关注目标的特征表示。这些额外的计算操作会增加模型的计算量,因此相应地会增加模型的推理时间。 然而,需要注意的是,具体的参数量和计算量增加情况与具体的实现方式和模型配置有关。在实际应用中,可以灵活调整模型结构和参数配置,以平衡模型的性能和计算资源的消耗。因此,从整体来看,引入SIMAM注意力机制可能会略微增加参数量和计算量,但可以提升模型的检测准确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值