数据分析实战之RMF模型(用户精准运营)

本文介绍了RFM模型在电商运营中的运用,通过最近一次消费(R)、消费频率(F)和消费金额(M)来评估商品推广效果。通过对销售金额、曝光量和推广费用进行标准化处理和分箱,可以识别高价值推广。通过Excel进行数据处理和分类,提高了短信转化率。分析步骤包括获取数据、数据处理、评分标准设定和结果展示,有助于优化运营策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、什么是RMF模型
RFM模型是衡量客户价值和客户创利能力的重要工具和手段。该机械模型通过一个客户的最近一次消费(Recency)、消费频率(Frequency)以及消费金额(Monetary)三项指标来描述该客户的价值状况。
阐述一下什么是R、M及F定义:

R:最近一次消费(Recency)
最近一次消费意指上一次购买的时候。理论上,上一次消费时间越近的顾客应该是比较好的顾客,对提供即时的商品或是服务也最有可能会有反应。营销人员若想业绩有所成长,只能靠偷取竞争对手的市场占有率,而如果要密切地注意消费者的购买行为,那么最近的一次消费就是营销人员第一个要利用的工具。历史显示,如果我们能让消费者购买,他们就会持续购买。这也就是为什么,0至6个月的顾客收到营销人员的沟通信息多于31至36个月的顾客。

F:消费频率(Frequency)
消费频率是顾客在限定的期间内所购买的次数。我们可以说最常购买的顾客,也是满意度最高的顾客。如果相信品牌及商店忠诚度的话,最常购买的消费者,忠诚度也就最高。增加顾客购买的次数意味着从竞争对手处偷取市场占有率,由别人的手中赚取营业额。

M:消费金额(Monetary)
消费金额是所有数据库报告的支柱,也可以验证“帕雷托法则”(Pareto’s Law)——公司80%的收入来自20%的顾客。它显示出排名前10%的顾客所花费的金额比下一个等级者多出至少2倍,占公司所有营业额的40%以上。如看累计百分比的那一栏,我们会发现有40%的顾客贡献公司总营业额的80%;而有60%的客户占营业额的90%以上。最右的一栏显示每一等分顾客的平均消费,表现最好的 10%的顾客平均花费1195美元,而最差的10%仅有18美元 。
RFM总分值:R F M = R S ∗ 100 + F S ∗ 10 + M S ∗ 1
评判:
在这里插入图片描述
应用:
比如对圈用户群发短信转化只有不到1%时,你可以用RFM做个分析,只选取R值高的用户(最近2周到最近一个月内消费的用户),转化率可以由1%提升到10%。
对数据分析前要想好的几个点。1、分析对象及指标 2、数据的处理及获取 3、模型的意义

1、此次分析的对象不是客户,而是针对电商的运营,主要是通过运营的的商品进行评价,评价出哪些是
推销的宝贝或者是那些是高效推广或者是低效推广。

一、数据获取

数据源来自某电商平台数据管理系统,首先需要将运营和商品和分析指标匹配,其中需要经过一系列
表连接left、join 还有在python中进行原始数据的替换,比如替换空格、逗号等

最后获取的数据:三个指标 销售金额(M)、曝光量(F)、总费用推广费(R)
在这里插入图片描述

数据指标选取
在这里插入图片描述
数据处理:
就销售额分数来说进行标准化

=ROUND(IFERROR((F2-AA2)/(X2-AA2),0),2)

得到辅助分数
在这里插入图片描述
接下要根据表把分数分为高、中、低三个部分然后进行价值分类8:

这边需要提一下,分箱是一个很复杂的点。有的业务人员或者是初学者随手等额/等距分箱,或者无脑“二八法则”,不管是从业务分析的角度还是投入模型的角度,效果可能都极差。这里要根据业务进行分析
比如我这是采取excel

=IF(AND(F2>U2,S2>V2,N2>W2),1,IF(AND(F2>U2,S2<=V2,N2>W2),2,IF(AND(F2>U2,S2>V2,N2<=W2),3,IF(AND(F2>U2,S2<=V2,N2<=W2),4,IF(AND(F2<=U2,S2>V2,N2>W2),5,IF(AND(F2<=U2,S2<=V2,N2>W2),6,IF(AND(F2<=U2,S2>V2,N2<=W2),7,IF(AND(F2<=U2,S2<=V2,N2<=W2),8,0))))))))

然后对分类结果进行汇总展示 在这里插入图片描述

最后利用在excel 利用切边器对数据进行展示汇总
不会切边器的可以百度学习。
在这里插入图片描述

这样可以通过从属分类的标签进行判断那个运营负责的那个品牌的模型是属于高价值推广了。

我们还可进行一些可视化图表进行装饰

分析步骤:
步骤、近1个月内运营的推广费做横轴,销售金额生成表格。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值