数据分析实战之RMF模型(用户精准运营)

RFM模型在电商运营推广分析中的应用
本文介绍了RFM模型在电商运营中的运用,通过最近一次消费(R)、消费频率(F)和消费金额(M)来评估商品推广效果。通过对销售金额、曝光量和推广费用进行标准化处理和分箱,可以识别高价值推广。通过Excel进行数据处理和分类,提高了短信转化率。分析步骤包括获取数据、数据处理、评分标准设定和结果展示,有助于优化运营策略。

一、什么是RMF模型
RFM模型是衡量客户价值和客户创利能力的重要工具和手段。该机械模型通过一个客户的最近一次消费(Recency)、消费频率(Frequency)以及消费金额(Monetary)三项指标来描述该客户的价值状况。
阐述一下什么是R、M及F定义:

R:最近一次消费(Recency)
最近一次消费意指上一次购买的时候。理论上,上一次消费时间越近的顾客应该是比较好的顾客,对提供即时的商品或是服务也最有可能会有反应。营销人员若想业绩有所成长,只能靠偷取竞争对手的市场占有率,而如果要密切地注意消费者的购买行为,那么最近的一次消费就是营销人员第一个要利用的工具。历史显示,如果我们能让消费者购买,他们就会持续购买。这也就是为什么,0至6个月的顾客收到营销人员的沟通信息多于31至36个月的顾客。

F:消费频率(Frequency)
消费频率是顾客在限定的期间内所购买的次数。我们可以说最常购买的顾客,也是满意度最高的顾客。如果相信品牌及商店忠诚度的话,最常购买的消费者,忠诚度也就最高。增加顾客购买的次数意味着从竞争对手处偷取市场占有率,由别人的手中赚取营业额。

M:消费金额(Monetary)
消费金额是所有数据库报告的支柱,也可以验证“帕雷托法则”(Pareto’s Law)——公司80%的收入来自20%的顾客。它显示出排名前10%的顾客所花费的金额比下一个等级者多出至少2倍,占公司所有营业额的40%以上。如看累计百分比的那一栏,我们会发现有40%的顾客贡献公司总营业额的80%;而有60%的客户占营业额的90%以上。最右的一栏显示每一等分顾客的平均消费,表现最好的 10%的顾客平均花费1195美元,而最差的10%仅有18美元 。
RFM总分值:R F M = R S ∗ 100 + F S ∗ 10 + M S ∗ 1
评判:
在这里插入图片描述
应用:
比如对圈用户群发短信转化只有不到1%时,你可以用RFM做个分析,只选取R值高的用户(最近2周到最近一个月内消费的用户),转化率可以由1%提升到10%。
对数据分析前要想好的几个点。1、分析对象及指标 2、数据的处理及获取 3、模型的意义

1、此次分析的对象不是客户,而是针对电商的运营,主要是通过运营的的商品进行评价,评价出哪些是
推销的宝贝或者是那些是高效推广或者是低效推广。

一、数据获取

数据源来自某电商平台数据管理系统,首先需要将运营和商品和分析指标匹配,其中需要经过一系列
表连接left、join 还有在python中进行原始数据的替换,比如替换空格、逗号等

最后获取的数据:三个指标 销售金额(M)、曝光量(F)、总费用推广费(R)
在这里插入图片描述

数据指标选取
在这里插入图片描述
数据处理:
就销售额分数来说进行标准化

=ROUND(IFERROR((F2-AA2)/(X2-AA2),0),2)

得到辅助分数
在这里插入图片描述
接下要根据表把分数分为高、中、低三个部分然后进行价值分类8:

这边需要提一下,分箱是一个很复杂的点。有的业务人员或者是初学者随手等额/等距分箱,或者无脑“二八法则”,不管是从业务分析的角度还是投入模型的角度,效果可能都极差。这里要根据业务进行分析
比如我这是采取excel

=IF(AND(F2>U2,S2>V2,N2>W2),1,IF(AND(F2>U2,S2<=V2,N2>W2),2,IF(AND(F2>U2,S2>V2,N2<=W2),3,IF(AND(F2>U2,S2<=V2,N2<=W2),4,IF(AND(F2<=U2,S2>V2,N2>W2),5,IF(AND(F2<=U2,S2<=V2,N2>W2),6,IF(AND(F2<=U2,S2>V2,N2<=W2),7,IF(AND(F2<=U2,S2<=V2,N2<=W2),8,0))))))))

然后对分类结果进行汇总展示 在这里插入图片描述

最后利用在excel 利用切边器对数据进行展示汇总
不会切边器的可以百度学习。
在这里插入图片描述

这样可以通过从属分类的标签进行判断那个运营负责的那个品牌的模型是属于高价值推广了。

我们还可进行一些可视化图表进行装饰

分析步骤:
步骤、近1个月内运营的推广费做横轴,销售金额生成表格。

<think>好的,我需要帮助用户了解游戏用户RMF模型的应用和实现。首先,我需要回顾RMF模型的基本概念,确保自己理解正确。根据用户提供的引用资料,RMF模型是基于R(最近一次消费时间)、M(总消费金额)、F(消费频次)这三个指标来划分用户群体的方法。引用[1]提到RMF模型用户划分成不同群体,代表不同的价值指数。引用[3]则讨论了两种构建思路:一种是将指标分为高于或低于平均数,另一种是将每个维度划分等级并评分。 接下来,我需要将这些信息应用到游戏场景中。游戏用户的消费行为可能有其特殊性,比如虚拟物品购买、游戏内货币使用、赛季或活动参与等。需要明确游戏中的R、F、M具体指什么。例如,R可能是最近一次登录或消费的时间,F可能是每周登录次数或购买次数,M可能是总充值金额。 然后,考虑实现步骤。根据引用[3]的示例,首先需要收集相关数据,并计算每个用户的R、F、M值。接着进行数据分箱或评分,可能使用分位数或自定义阈值来划分等级。例如,将R值按最近7天、30天、90天划分,赋予不同分数。最后根据总分对用户分层,制定运营策略。 还需要注意游戏行业的特殊需求。比如,新玩家和老玩家的价值可能不同,可能需要结合注册时间(引用[2]提到的FMR模型)。此外,促销活动的影响也很重要,如引用[2]提到国货用户的促销参与情况,类似地,游戏中的促销活动可能影响用户的消费行为,需要调整模型参数。 可能的问题包括数据清洗(处理异常值或缺失值)、确定合适的评分标准、以及如何将分层结果应用到实际运营中。例如,针对高价值用户推出专属内容,对流失用户进行召回活动。 最后,要确保回答结构清晰,分步骤说明实现过程,并举例说明应用场景。同时,生成相关问题,引导用户深入思考,如优化方法、与其他模型的结合等。</think>### 游戏用户RMF模型的应用与实现 #### 1. **RMF模型的核心指标定义(游戏场景适配)** 在游戏中,RMF模型的三个维度需根据用户行为特点调整: - **R(Recency)**:最近一次登录/消费时间(例如:距离上次充值的天数)[^1] - **F(Frequency)**:消费频次(例如:周均充值次数、月活跃天数)[^2] - **M(Monetary)**:消费金额(例如:累计充值金额、赛季通行证购买总额)[^1] #### 2. **数据准备与计算** **步骤1:数据清洗** 提取用户行为日志和消费记录,过滤异常值(如单次充值金额过高的测试账号)。 **步骤2:指标计算** ```python # 示例:计算每个用户的R、F、M值 import pandas as pd # 假设原始数据包含字段:user_id, recharge_date, recharge_amount df = pd.read_csv("game_recharge_data.csv") # 计算R值(距离当前时间的天数) current_date = pd.to_datetime("2023-10-01") df["R"] = (current_date - pd.to_datetime(df["recharge_date"])).dt.days # 计算F值(总消费次数) F = df.groupby("user_id")["recharge_date"].count().rename("F") # 计算M值(总消费金额) M = df.groupby("user_id")["recharge_amount"].sum().rename("M") # 合并RFM数据 RFM = pd.concat([R, F, M], axis=1) ``` #### 3. **评分与分层方法** 参考引用[3]的两种思路: - **二分类法**(适合快速划分): $$R_{\text{score}} = \begin{cases} 1 & \text{if } R < \text{中位数} \\ 0 & \text{otherwise} \end{cases}$$ 同理对F、M评分,总分$0-3$分区分低、中、高价值用户。 - **多等级法**(精细分层): 将每个维度分为5个等级(如R按30天、90天、180天分段),赋予$1-5$分,总分$3-15$分划分用户层级[^3]。 #### 4. **游戏场景应用案例** - **高价值用户(R低、F高、M高)**:推送专属礼包或赛季限定皮肤,提升留存 - **流失风险用户(R高)**:触发召回活动(如回归奖励) - **低频高付费用户**:分析是否为“鲸鱼用户”,针对性优化大额充值体验 #### 5. **优化方向** - **结合注册时间**:如引用[2]提到FMR模型,可分析新用户(注册<30天)与老用户RMF差异 - **动态权重调整**:赛季期间提高F的权重,促销期间侧重M值 - **聚类分析补充**:对RMF评分相近的群体进行细分(例如:活跃小氪玩家 vs 沉默大R玩家) ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值