点击上方“小白学视觉”,选择加"星标"或“置顶”
重磅干货,第一时间送达
本文转自 | 视觉算法
背景
《DyNet: Dynamic Convolution for Accelerating Convolutional Neural Networks》是华为挂出的论文,其核心思想和谷歌的CondConv类似,产生kernel的方式有细微的不同,同时也取得了很高的性能涨点。

论文地址:http://de.arxiv.org/abs/2004.10694
一、 研究动机:
该论文利用了动态卷积来做神经网络的加速。该文章对activation进行了协方差的分析和可视化,从而提出了Coefficient prediction模块和Dynamic generation模块来产生动态卷积。相比于标准卷积,相同的通道数下,动态卷积的性能有明显的提升。
二、研究方法
整体思路如图所示:
华为提出了一种名为DyNet的动态卷积方法,旨在加速卷积神经网络。通过分析激活的协方差,该论文提出了系数预测模块和动态生成模块来创建动态卷积权重。与谷歌的CondConv相比,DyNet生成的权重参数不共享,从而在保持相似性能的同时减少了计算量。实验表明,DyNet在MobileNet和ResNet等模型上实现了更高的效率或性能提升。
最低0.47元/天 解锁文章
1069

被折叠的 条评论
为什么被折叠?



