【荐读 IEEE TPAMI】Parallel and Distributed Graph Neural Networks_ An In-Depth Concurrency Analysis

171 篇文章 11 订阅 ¥29.90 ¥99.00

题目:Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency Analysis

图神经网络的并行与分布式执行:深入并发性分析

作者:Maciej Besta 和 Torsten Hoefler


摘要

图神经网络(GNNs)是深度学习中最强大的工具之一。它们通常在无结构网络上解决复杂问题,如节点分类、图分类或链接预测,准确度很高。然而,GNNs 的推理和训练都很复杂,并且它们独特地结合了不规则图处理的特征与密集和规则计算。这种复杂性使得在现代大规模并行架构上有效执行 GNNs 变得非常具有挑战性。为了缓解这个问题,我们首先设计了一个 GNNs 中并行性的分类法,考虑了数据和模型并行性以及不同形式的流水线处理。然后,我们使用这个分类法来研究众多 GNN 模型、由 GNN 驱动的机器学习任务、软件框架或硬件加速器中的并行性量。我们使用了

  • 29
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
IEEE TPAMIIEEE Transactions on Pattern Analysis and Machine Intelligence)是一个涵盖模式识别、计算机视觉、图像处理和机器学习等领域的高质量期刊,其中也包括用于缺陷检测的研究。 以下是一些在IEEE TPAMI期刊上发表的用于缺陷检测的论文: 1. "Automatic Defect Detection in X-Ray Images Using Convolutional Neural Networks"(使用卷积神经网络自动检测X射线图像中的缺陷)-- 该论文提出了一种基于卷积神经网络(CNN)的自动缺陷检测方法,该方法可以应用于各种类型的X射线图像中的缺陷检测。 2. "Unsupervised Defect Detection in Textured Materials Using Convolutional Autoencoders"(使用卷积自动编码器在纹理材料中进行无监督缺陷检测)-- 该论文提出了一种基于卷积自动编码器(CAE)的无监督缺陷检测方法,该方法可以有效地检测纹理材料中的缺陷。 3. "A Hierarchical Approach to Defect Detection in Semiconductor Wafer Images"(半导体晶圆图像缺陷检测的分层方法)-- 该论文提出了一种基于分层方法的缺陷检测方法,可以应用于半导体晶圆图像中的缺陷检测。 4. "Deep Learning-Based Defect Detection in Semiconductor Manufacturing"(基于深度学习的半导体制造中的缺陷检测)-- 该论文提出了一种基于深度学习的缺陷检测方法,可以应用于半导体制造中的缺陷检测,并且在实验中取得了良好的结果。 这些论文都展示了IEEE TPAMI作为一个重要的期刊,提供了广泛的研究和应用领域,包括缺陷检测。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值