TPAMI 2024 | 图像恢复中深度展开方法的旋转等变近端算子

Rotation Equivariant Proximal Operator for Deep Unfolding Methods in Image Restoration

题目:图像恢复中深度展开方法的旋转等变近端算子

作者:Jiahong Fu; Qi Xie; Deyu Meng; Zongben Xu
源码: https://github.com/jiahong-fu/Equivariant-Proximal-Operator


摘要

深度展开方法在计算机视觉任务中引起了显著的关注,它很好地连接了传统的图像处理建模方式与最新的深度学习技术。具体来说,通过在每个实现步骤的算法算子与每层网络模块之间建立直接对应关系,可以合理构建一个几乎“白盒”的网络架构,具有高度的可解释性。在这种架构中,只有近端算子的预定义部分,即近端网络,需要手动配置,使网络能够以数据驱动的方式自动提取图像的内在先验。在当前的深度展开方法中,这样的近端网络通常被设计为CNN架构,其必要性已由最近的理论所证明。也就是说,CNN结构实质上提供了图像先验中的平移对称性,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值