TPAMI 2025 | 基于残差转移的高效扩散模型用于图像恢复

论文信息

题目:Efficient Diffusion Model for Image Restoration by Residual Shifting
基于残差转移的高效扩散模型用于图像恢复
作者:Zongsheng Yue, Jianyi Wang, Chen Change Loy
源码链接:https://github.com/zsyOAOA/ResShift

论文创新点

  1. 提出了一种高效的扩散模型,通过残差转移在HQ和LQ图像之间建立短马尔可夫链,显著减少采样步骤。
  2. 设计了灵活的噪声调度,控制转移速度和噪声强度,平衡图像的保真度和真实性。
  3. 用Swin Transformer替换自注意力层,增强模型在处理任意分辨率图像时的适应性。

摘要

尽管基于扩散的图像恢复(IR)方法取得了显著的成功,但它们仍然受到推理速度慢的限制ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值