论文信息
题目:Evolved Hierarchical Masking for Self-Supervised Learning
基于进化层次掩码的自监督学习
作者:Zhanzhou Feng, Shiliang Zhang
论文创新点
- 进化层次掩码: 提出了一种动态进化的层次掩码方法,根据模型训练阶段的不同生成不同层次的掩码,逐步从低层次细节到高层次语义进行学习。
- 自适应掩码生成: 利用正在训练的模型构建图像内容的层次结构,并根据该结构生成掩码,无需额外的预训练模型或标注。
- 广泛任务性能提升: 在多个下游任务(如图像分类、语义分割、地标检索等)上显著提升了性能,尤其在语义需求高的任务上缩小了与大规模预训练的差距。
摘要
现有的掩码图像建模(Masked Image Modeling, MIM)方法通常采用固定的掩码模式来指导自监督训练。由于这些掩码模式依赖于不同的标准来描述图像内容&