TIP 2025 | HAda:面向多视图卷积网络的超自适应参数高效学习

论文信息

HAda: Hyper-Adaptive Parameter-Efficient Learning for Multi-View ConvNets
HAda:面向多视图卷积网络的超自适应参数高效学习
作者:Shiye Wang, Changsheng Li, Zeyu Yan, Wanjun Liang, Ye Yuan, Guoren Wang

论文创新点

  1. 首次将超网络应用于多视图卷积网络的参数高效学习:本文首次尝试基于超网络(hypernetwork)研究多视图卷积网络的参数高效学习。
  2. 提出多视图共享的全局门控插值策略:作者提出了一个多视图共享的全局门控插值模块(Global Gated Interpolation, GGI),该模块能够生成分层门控因子,动态调整全局上下文信息对分层权重生成的影响,从而捕捉不同层之间的依赖关系
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值