论文信息
HAda: Hyper-Adaptive Parameter-Efficient Learning for Multi-View ConvNets
HAda:面向多视图卷积网络的超自适应参数高效学习
作者:Shiye Wang, Changsheng Li, Zeyu Yan, Wanjun Liang, Ye Yuan, Guoren Wang
论文创新点
- 首次将超网络应用于多视图卷积网络的参数高效学习:本文首次尝试基于超网络(hypernetwork)研究多视图卷积网络的参数高效学习。
- 提出多视图共享的全局门控插值策略:作者提出了一个多视图共享的全局门控插值模块(Global Gated Interpolation, GGI),该模块能够生成分层门控因子,动态调整全局上下文信息对分层权重生成的影响,从而捕捉不同层之间的依赖关系