TPAMI 2025 | W - DOE:基于 Wasserstein 分布无关的离群暴露方法(一)

论文信息

题目:W - DOE: Wasserstein Distribution - agnostic Outlier Exposure
W - DOE:基于 Wasserstein 分布无关的离群暴露方法
作者:Qizhou Wang, Bo Han, Yang Liu, Chen Gong, Tongliang Liu, Jiming Liu

论文创新点

  1. 提出新的数据合成方法:论文提出了**隐式数据合成(IDS)**方法。该方法基于模型扰动可导致隐式数据转换这一新颖见解,通过扰动模型参数,使模型能从转换后的隐式数据中学习。
  2. 设计新的学习框架:作者提出了**Wasserstein分布无关离群暴露(W - DOE)**这一系统的学习框架。通过定义以辅助OOD分布为中心的分布覆盖范围,采用最坏情况学习方案,以最坏情况OOD遗憾(WOR)来衡量性能&#x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值