论文信息
题目:W - DOE: Wasserstein Distribution - agnostic Outlier Exposure
W - DOE:基于 Wasserstein 分布无关的离群暴露方法
作者:Qizhou Wang, Bo Han, Yang Liu, Chen Gong, Tongliang Liu, Jiming Liu
论文创新点
- 提出新的数据合成方法:论文提出了**隐式数据合成(IDS)**方法。该方法基于模型扰动可导致隐式数据转换这一新颖见解,通过扰动模型参数,使模型能从转换后的隐式数据中学习。
- 设计新的学习框架:作者提出了**Wasserstein分布无关离群暴露(W - DOE)**这一系统的学习框架。通过定义以辅助OOD分布为中心的分布覆盖范围,采用最坏情况学习方案,以最坏情况OOD遗憾(WOR)来衡量性能&#x