TPAMI 2025 | W - DOE:基于 Wasserstein 分布无关的离群暴露方法(二)

6. 理论分析

作者为W - DOE提供了理论依据,证明了IDS生成多样化数据的有效性以及W - DOE在OOD分布差异下的有效性。

  • 隐式数据合成:作者揭示了模型扰动可以在输入空间中隐式地导致数据转换,与原始数据相比,隐式数据遵循新的数据分布。首先,作者考虑一个 K K K层网络的递归定义: z
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值