大模型LoRA微调过程

LoRA (Low-Rank Adaptation of Large Language Models) 是一种用于微调大型预训练模型的方法,尤其适合在计算资源有限的情况下进行微调。通过限制参数更新的范围,并巧妙利用矩阵分解,LoRA 大幅减少了微调过程中的参数量,从而提高了效率并降低了显存占用。

1. LoRA为什么会出现?

LoRA 的出现是为了解决大型语言模型(如 GPT、BERT 等)在微调时面临的计算和内存瓶颈。随着模型参数规模的急剧增大,传统的全参数微调(fine-tuning)需要大量的计算资源和存储空间,限制了模型在资源有限环境中的应用。

LoRA 的核心思想是:在不改变原始模型权重的情况下,通过引入低秩矩阵的增量来进行微调。也就是说,LoRA 不直接更新原模型的参数,而是为其特定的层添加额外的可训练参数,从而实现对模型的适应调整。一方面知识对部分层进行微调,另一方面还对需要更新的矩阵层ΔW进行了分解,进一步减少了参数量和计算量。

2. 基本原理

LoRA 假设神经网络的权重更新矩阵 ΔW是低秩的。利用这一假设,它通过低秩矩阵分解,将矩阵更新分解为两个小矩阵的乘积,从而减少了参数的数量。
LoRA基本原理

具体来说,在标准的神经网络层中,例如一个线性层,其计算可以表示为:
y = W x y=Wx y=Wx
其中 W 是权重矩阵,x是输入,y 是输出。在传统微调中,我们需要直接更新 W 这个大矩阵。而 LoRA 的做法是保持 W 不变,增加一个可训练的增量 ΔW,使得微调后的输出为:
y = ( W + Δ W ) x y=(W+ΔW)x y=(W+ΔW)x
为了降低 ΔW的参数量,LoRA 通过将 ΔW 分解为两个低秩矩阵 AB,即:
Δ W = A B ΔW=AB ΔW=AB
其中 AB 的维度远小于 W,从而大大减少了微调时需要更新的参数。

3. 微调过程

LoRA 微调的具体步骤如下:

3.1 预训练模型加载

首先加载一个大型预训练模型,例如 GPT 或 Qwen。此时,模型的所有参数 W 都是固定的(微调过程中冻结模型参数),不会在 LoRA 微调过程中直接更新。

3.2 插入 LoRA 层

在模型的某些层(例如 Transformer 的注意力层)中插入 LoRA 层。具体地,在这些层的线性变换(Linear Layers)上引入低秩分解。通常,LoRA 会选择在特定的层(如自注意力层的 Query 和 Key 投影矩阵)应用低秩矩阵分解。

3.3 定义低秩矩阵

在插入的 LoRA 层中,定义两个小矩阵 AB,其中 A 的尺寸是 r×drB的尺寸是 d×kd ,这里 d 是输入维度,k 是输出维度,r 是分解的秩,通常远小于 dk

3.4 训练过程
  • 在训练过程中,只有 LoRA 引入的 AB 矩阵是可训练的,原始模型的权重 W 不会被更新。
  • 模型的前向传播仍然会计算完整的 Wx,同时也会计算增量 ΔWx=(AB)x,然后将它们相加。
  • 通过这种方式,LoRA 微调可以适应新的任务数据,但所需更新的参数量大大减少。
3.5 损失函数与优化器

LoRA 微调的损失函数和标准的微调一样,通常是交叉熵损失或者其他适合任务的损失函数。优化器也可以是常用的如 Adam、SGD 等。唯一的区别是,只有 AB 参与梯度更新,而模型的其他部分保持冻结状态。

在 LoRA 微调过程中,损失函数的计算方式与传统的全参数微调相似,核心思想是在保持原模型权重不变的前提下,通过引入的低秩矩阵来调整模型的输出。具体来说,LoRA 引入了两个小矩阵 AB 来生成增量矩阵 ΔW,并将其加到模型的某些层上进行训练。

前向传播中的输出:

在微调过程中,模型的输出是基于原始权重和加入的低秩矩阵共同生成的:

  • 原始模型的输出:模型加载了预训练好的权重矩阵 W,例如线性层权重矩阵。在前向传播中,原模型的输出为:
    y pre-trained = W x y_{\text{pre-trained}} = W x ypre-trained=Wx
    这里 W 是原始的权重矩阵,x 是输入。

  • 加入 LoRA 的输出:LoRA 方法通过低秩矩阵 AB 来调整权重矩阵,形成一个增量矩阵 ΔW,其计算如下:
    Δ W = A B ΔW=AB ΔW=AB
    因此,经过微调后的线性层输出为:
    y LoRA = ( W + Δ W ) x = W x + ( A B ) x y_{\text{LoRA}} = (W + \Delta W) x = W x + (A B) x yLoRA=(W+ΔW)x=Wx+(AB)x
    这里 ΔW 反映了 LoRA 层的贡献,它在前向传播中加入了微调产生的变化。、

损失函数的计算:

与常规的全参数微调类似,LoRA 微调的损失函数通常是基于特定任务的目标来定义的,比如交叉熵损失(分类任务)或均方误差(回归任务)。LoRA 的关键在于损失函数的输入是微调后的模型输出 yLoRA,而不是只使用原始权重的输出。

假设模型在给定输入 xxx 后的目标输出为 ytrue,那么典型的损失函数可以是交叉熵损失:
L = CrossEntropy ( y LoRA , y true ) \mathcal{L} = \text{CrossEntropy}(y_{\text{LoRA}}, y_{\text{true}}) L=CrossEntropy(yLoRA,ytrue)
或者是均方误差损失(MSE):
L = MSE ( y LoRA , y true ) \mathcal{L} = \text{MSE}(y_{\text{LoRA}}, y_{\text{true}}) L=MSE(yLoRA,ytrue)
其中
y LoRA = ( W + Δ W ) x y_{\text{LoRA}} = (W + \Delta W) x yLoRA=(W+ΔW)x
注意,这里的损失函数仅仅是基于模型的输出计算的,和传统微调的方式没有区别。LoRA 的创新之处在于它通过调整参数的方式减少了可训练参数的数量,但损失计算还是基于模型的输出和目标输出的差异。

参数更新:

在损失函数计算完毕后,优化器(如 Adam 或 SGD)会基于损失函数的梯度来更新参数。在 LoRA 微调中,模型的大部分权重(原始的 W)是冻结的,不会更新。只有新增的低秩矩阵 AB 参与参数更新。

具体来说,基于损失函数的反向传播过程会计算:

  • 对低秩矩阵 A 的梯度
    ∂ L ∂ A \frac{\partial \mathcal{L}}{\partial A} AL

  • 对低秩矩阵 B 的梯度
    ∂ L ∂ B \frac{\partial \mathcal{L}}{\partial B} BL

而原始权重矩阵 W 的梯度则为零,因为它是冻结的。

因此,优化器仅更新低秩矩阵 AB 的参数,模型的其他部分保持不变。这种方式使得 LoRA 在显著减少训练参数的同时,仍能有效调整模型的输出,从而适应新的任务。

最后,将微调完的 AB 矩阵相乘得到 ΔW ,然后与原模型参数 W 相加即可得到微调后的模型参数。

4. 优势与特点

LoRA 相比传统的微调方法有以下几个显著优势:

  • 参数效率:只需更新非常少量的参数,大大降低了显存的占用。
  • 加速训练:由于参与训练的参数量减少,训练速度可以显著提高。
  • 节省存储:微调后,只需存储两个低秩矩阵 AB ,而不需要存储整个大型模型的参数。
  • 性能保留:在很多任务中,LoRA 的微调效果可以接近甚至达到全参数微调的效果。

5. 应用场景

LoRA 尤其适用于以下场景:

  • 资源受限环境:如边缘设备或低计算资源的服务器,LoRA 可以使得在有限资源下进行大模型的微调成为可能。
  • 多任务微调:由于 LoRA 只引入了极少量的参数,可以对同一模型进行多任务微调,而不需要每次保存完整的模型权重。

6. 实践中的应用

在实际应用中,LoRA 已被广泛应用于各类语言模型的微调,特别是在自然语言处理(NLP)任务中。例如,LoRA 可以用于将 GPT-3 微调到特定的下游任务(如文本生成、问答等)上,而无需更新整个 GPT-3 模型。

此外,LoRA 也逐渐应用于其他领域,如计算机视觉中的图像分类和目标检测任务中,作为一种通用的低秩适应方法。

总结

LoRA 微调通过将大型模型的权重更新限制在低秩矩阵上,实现了高效的参数更新和资源节约。它在保持预训练模型参数不变的情况下,仅通过少量的参数调整适应新的任务,从而极大降低了微调的成本,适用于需要频繁微调或者资源有限的应用场景。

### SAM模型LoRA微调教程 #### 准备工作 为了对Segment Anything Model (SAM) 进行低秩自适应(LoRA) 微调,需先安装必要的库并加载预训练的SAM模型。这一步骤确保了后续操作的基础环境搭建完成。 ```bash pip install segment-anything lora-torch ``` #### 加载预训练SAM模型 利用官方提供的接口快速加载已有的SAM模型,该模型已经在大规模数据集上进行了充分训练,从而获得较为理想的初始化参数设置[^1]。 ```python from segment_anything import sam_model_registry, SamPredictor sam_checkpoint = "path/to/sam/checkpoint" model_type = "vit_b" device = "cuda" if torch.cuda.is_available() else "cpu" sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device=device) predictor = SamPredictor(sam) ``` #### 应用LoRA技术于SAM之上 引入LoRA模块至现有的SAM架构内,在不改变原有网络结构的前提下增加少量可学习参数用于捕捉目标任务特性。此方法有助于减少计算资源消耗同时提升特定任务表现效果[^2]。 ```python import loralib as lora lora_config = { 'r': 8, 'alpha': 16, } for name, module in sam.named_modules(): if isinstance(module, nn.Linear): # or other types you want to apply LoRA on setattr(sam, name, lora.LoRALinear( in_features=module.in_features, out_features=module.out_features, r=lora_config['r'], alpha=lora_config['alpha'] )) ``` #### 数据准备与迭代优化 针对具体应用场景收集标注好的图片及其对应掩码作为输入源;随后定义损失函数以及选用合适的梯度下降算法来最小化预测误差直至收敛稳定状态为止。这一过程中应当注意调整超参以获取更佳的学习效率及泛化能力。 ```python optimizer = torch.optim.AdamW([ {'params': list(lora.get_lora_params(sam))}, ], lr=1e-4) criterion = nn.CrossEntropyLoss() def train_one_epoch(model, dataloader, optimizer, criterion): model.train() for images, masks in tqdm(dataloader): ... train_dataloader = ... # Your DataLoader here epochs = 50 for epoch in range(epochs): train_one_epoch(sam, train_dataloader, optimizer, criterion) ``` #### 测试评估性能指标 最后通过预留验证集合测试集上的实际运行情况衡量改进后的模型质量高低,并据此作出进一步修改完善决策依据。 ```python def evaluate(model, test_loader): ... test_loader = ... # Prepare your test set loader evaluate(sam, test_loader) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值