大模型LoRA微调过程

LoRA (Low-Rank Adaptation of Large Language Models) 是一种用于微调大型预训练模型的方法,尤其适合在计算资源有限的情况下进行微调。通过限制参数更新的范围,并巧妙利用矩阵分解,LoRA 大幅减少了微调过程中的参数量,从而提高了效率并降低了显存占用。

1. LoRA为什么会出现?

LoRA 的出现是为了解决大型语言模型(如 GPT、BERT 等)在微调时面临的计算和内存瓶颈。随着模型参数规模的急剧增大,传统的全参数微调(fine-tuning)需要大量的计算资源和存储空间,限制了模型在资源有限环境中的应用。

LoRA 的核心思想是:在不改变原始模型权重的情况下,通过引入低秩矩阵的增量来进行微调。也就是说,LoRA 不直接更新原模型的参数,而是为其特定的层添加额外的可训练参数,从而实现对模型的适应调整。一方面知识对部分层进行微调,另一方面还对需要更新的矩阵层ΔW进行了分解,进一步减少了参数量和计算量。

2. 基本原理

LoRA 假设神经网络的权重更新矩阵 ΔW是低秩的。利用这一假设,它通过低秩矩阵分解,将矩阵更新分解为两个小矩阵的乘积,从而减少了参数的数量。
LoRA基本原理

具体来说,在标准的神经网络层中,例如一个线性层,其计算可以表示为:
y = W x y=Wx y=Wx
其中 W 是权重矩阵,x是输入,y 是输出。在传统微调中,我们需要直接更新 W 这个大矩阵。而 LoRA 的做法是保持 W 不变,增加一个可训练的增量 ΔW,使得微调后的输出为:
y = ( W + Δ W ) x y=(W+ΔW)x y=(W+ΔW)x
为了降低 ΔW的参数量,LoRA 通过将 ΔW 分解为两个低秩矩阵 AB,即:
Δ W = A B ΔW=AB ΔW=AB
其中 AB 的维度远小于 W,从而大大减少了微调时需要更新的参数。

3. 微调过程

LoRA 微调的具体步骤如下:

3.1 预训练模型加载

首先加载一个大型预训练模型,例如 GPT 或 Qwen。此时,模型的所有参数 W 都是固定的(微调过程中冻结模型参数),不会在 LoRA 微调过程中直接更新。

3.2 插入 LoRA 层

在模型的某些层(例如 Transformer 的注意力层)中插入 LoRA 层。具体地,在这些层的线性变换(Linear Layers)上引入低秩分解。通常,LoRA 会选择在特定的层(如自注意力层的 Query 和 Key 投影矩阵)应用低秩矩阵分解。

3.3 定义低秩矩阵

在插入的 LoRA 层中,定义两个小矩阵 AB,其中 A 的尺寸是 r×drB的尺寸是 d×kd ,这里 d 是输入维度,k 是输出维度,r 是分解的秩,通常远小于 dk

3.4 训练过程
  • 在训练过程中,只有 LoRA 引入的 AB 矩阵是可训练的,原始模型的权重 W 不会被更新。
  • 模型的前向传播仍然会计算完整的 Wx,同时也会计算增量 ΔWx=(AB)x,然后将它们相加。
  • 通过这种方式,LoRA 微调可以适应新的任务数据,但所需更新的参数量大大减少。
3.5 损失函数与优化器

LoRA 微调的损失函数和标准的微调一样,通常是交叉熵损失或者其他适合任务的损失函数。优化器也可以是常用的如 Adam、SGD 等。唯一的区别是,只有 AB 参与梯度更新,而模型的其他部分保持冻结状态。

在 LoRA 微调过程中,损失函数的计算方式与传统的全参数微调相似,核心思想是在保持原模型权重不变的前提下,通过引入的低秩矩阵来调整模型的输出。具体来说,LoRA 引入了两个小矩阵 AB 来生成增量矩阵 ΔW,并将其加到模型的某些层上进行训练。

前向传播中的输出:

在微调过程中,模型的输出是基于原始权重和加入的低秩矩阵共同生成的:

  • 原始模型的输出:模型加载了预训练好的权重矩阵 W,例如线性层权重矩阵。在前向传播中,原模型的输出为:
    y pre-trained = W x y_{\text{pre-trained}} = W x ypre-trained=Wx
    这里 W 是原始的权重矩阵,x 是输入。

  • 加入 LoRA 的输出:LoRA 方法通过低秩矩阵 AB 来调整权重矩阵,形成一个增量矩阵 ΔW,其计算如下:
    Δ W = A B ΔW=AB ΔW=AB
    因此,经过微调后的线性层输出为:
    y LoRA = ( W + Δ W ) x = W x + ( A B ) x y_{\text{LoRA}} = (W + \Delta W) x = W x + (A B) x yLoRA=(W+ΔW)x=Wx+(AB)x
    这里 ΔW 反映了 LoRA 层的贡献,它在前向传播中加入了微调产生的变化。、

损失函数的计算:

与常规的全参数微调类似,LoRA 微调的损失函数通常是基于特定任务的目标来定义的,比如交叉熵损失(分类任务)或均方误差(回归任务)。LoRA 的关键在于损失函数的输入是微调后的模型输出 yLoRA,而不是只使用原始权重的输出。

假设模型在给定输入 xxx 后的目标输出为 ytrue,那么典型的损失函数可以是交叉熵损失:
L = CrossEntropy ( y LoRA , y true ) \mathcal{L} = \text{CrossEntropy}(y_{\text{LoRA}}, y_{\text{true}}) L=CrossEntropy(yLoRA,ytrue)
或者是均方误差损失(MSE):
L = MSE ( y LoRA , y true ) \mathcal{L} = \text{MSE}(y_{\text{LoRA}}, y_{\text{true}}) L=MSE(yLoRA,ytrue)
其中
y LoRA = ( W + Δ W ) x y_{\text{LoRA}} = (W + \Delta W) x yLoRA=(W+ΔW)x
注意,这里的损失函数仅仅是基于模型的输出计算的,和传统微调的方式没有区别。LoRA 的创新之处在于它通过调整参数的方式减少了可训练参数的数量,但损失计算还是基于模型的输出和目标输出的差异。

参数更新:

在损失函数计算完毕后,优化器(如 Adam 或 SGD)会基于损失函数的梯度来更新参数。在 LoRA 微调中,模型的大部分权重(原始的 W)是冻结的,不会更新。只有新增的低秩矩阵 AB 参与参数更新。

具体来说,基于损失函数的反向传播过程会计算:

  • 对低秩矩阵 A 的梯度
    ∂ L ∂ A \frac{\partial \mathcal{L}}{\partial A} AL

  • 对低秩矩阵 B 的梯度
    ∂ L ∂ B \frac{\partial \mathcal{L}}{\partial B} BL

而原始权重矩阵 W 的梯度则为零,因为它是冻结的。

因此,优化器仅更新低秩矩阵 AB 的参数,模型的其他部分保持不变。这种方式使得 LoRA 在显著减少训练参数的同时,仍能有效调整模型的输出,从而适应新的任务。

最后,将微调完的 AB 矩阵相乘得到 ΔW ,然后与原模型参数 W 相加即可得到微调后的模型参数。

4. 优势与特点

LoRA 相比传统的微调方法有以下几个显著优势:

  • 参数效率:只需更新非常少量的参数,大大降低了显存的占用。
  • 加速训练:由于参与训练的参数量减少,训练速度可以显著提高。
  • 节省存储:微调后,只需存储两个低秩矩阵 AB ,而不需要存储整个大型模型的参数。
  • 性能保留:在很多任务中,LoRA 的微调效果可以接近甚至达到全参数微调的效果。

5. 应用场景

LoRA 尤其适用于以下场景:

  • 资源受限环境:如边缘设备或低计算资源的服务器,LoRA 可以使得在有限资源下进行大模型的微调成为可能。
  • 多任务微调:由于 LoRA 只引入了极少量的参数,可以对同一模型进行多任务微调,而不需要每次保存完整的模型权重。

6. 实践中的应用

在实际应用中,LoRA 已被广泛应用于各类语言模型的微调,特别是在自然语言处理(NLP)任务中。例如,LoRA 可以用于将 GPT-3 微调到特定的下游任务(如文本生成、问答等)上,而无需更新整个 GPT-3 模型。

此外,LoRA 也逐渐应用于其他领域,如计算机视觉中的图像分类和目标检测任务中,作为一种通用的低秩适应方法。

总结

LoRA 微调通过将大型模型的权重更新限制在低秩矩阵上,实现了高效的参数更新和资源节约。它在保持预训练模型参数不变的情况下,仅通过少量的参数调整适应新的任务,从而极大降低了微调的成本,适用于需要频繁微调或者资源有限的应用场景。

### LoRA微调方法概述 对于大规模语言模型(LLMs),传统的全参数微调方式需要大量计算资源和训练数据,这使得其应用受到限制。为了应对这一挑战,低秩适应(LoRA, Low-Rank Adaptation)被提出作为一种高效的微调技术[^2]。 #### LoRA的核心原理 LoRA通过冻结原始模型中的大部分权重,在此基础上引入少量可训练的新参数来实现特定任务的学习目标。具体来说,它利用矩阵分解的思想,将原本高维的权重矩阵替换为两个较小维度矩阵的乘积形式。这种方法不仅显著减少了所需的训练参数数量,还保持了较高的性能表现水平。 以下是基于Keras框架下使用LoRA对Gemma模型进行微调的一个简单实例: ```python import tensorflow as tf from keras.layers import Dense from loralib.layers.dense import LoraDense # 假设这是支持LoRA功能的库 def create_lora_model(input_dim, output_dim, rank=4): inputs = tf.keras.Input(shape=(input_dim,)) # 使用LoRA层替代标准密集连接层 lora_layer = LoraDense(output_dim, r=rank)(inputs) predictions = Dense(output_dim, activation='softmax')(lora_layer) model = tf.keras.Model(inputs=inputs, outputs=predictions) return model model = create_lora_model(input_dim=768, output_dim=10, rank=8) model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]) ``` 上述代码片段展示了如何构建一个带有LoRA机制的小型神经网络结构,并指定`r=8`作为低秩近似因子大小。实际操作过程中可以根据硬件条件调整此超参值以平衡效率与效果之间的关系。 #### 关键优势总结 - **减少内存占用**: 只需存储新增加的部分小型张量即可完成整个系统的部署工作; - **加速收敛速度**: 更少待优化变量意味着每轮迭代所需时间更短; - **维持良好泛化能力**: 即使只修改一小部分原有架构也能达到接近甚至超越传统FT的结果质量; 尽管如此,值得注意的是并非所有场景都适合采用此类简化策略——某些复杂度较高或者高度定制化的应用场景可能仍然依赖于完整的再训练流程才能获得最佳解决方案。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值