【深度学习】梯度累加和直接用大的batchsize有什么区别

梯度累加与使用较大的batchsize有类似的效果,但是也有区别

1.内存和计算资源要求

  1. 梯度累加: 通过在多个小的mini-batch上分别计算梯度并累积,梯度累积不需要一次加载所有数据,因此显著减少了内存需求。这对于显存有限的设别尤为重要,因为直接使用较大的batchsize可能会导致内存溢出
  2. 大的batchsize: 直接使用较大的batchsize会同时将所有的数据加载到内存中,内存占用率显著提升

2. 参数更新频率

  1. 梯度累加: 虽然累加 N 个 mini-batch 才更新一次参数,但每个 mini-batch 的梯度都计算一次,因此更新频率相对较低。不过,这不会显著影响模型的效果,因为总的参数更新步数并未减少。
  2. 大 batchsize: 一次计算出全部数据的梯度,并立即更新参数。因此更新频率更高,但效果与累积更新基本一致

3. 结果相似度

理论上等效:梯度累加和直接使用大的 batch size 在数学上是等效的,最终效果类似。

4. 使用场景

梯度累加: 适合在内存受限情况下模拟大 batch 效果,或在分布式训练场景中应用
直接大 batchsize: 适合有充足内存的硬件设备,但灵活性不及梯度累加

5. 代码示例

# 梯度累加
accumulation_steps = 4
optimizer.zero_grad()
for i, (inputs, labels) in enumerate(data_loader):
    outputs = model(inputs)
    loss = loss_fn(outputs, labels)
    loss.backward()

    if (i + 1) % accumulation_steps == 0:
        optimizer.step()
        optimizer.zero_grad()
# 大的batchsize
data_loader = DataLoader(dataset, batch_size=256) # 假设 256 是较大的 batch size
for inputs, labels in data_loader:
    optimizer.zero_grad()
    outputs = model(inputs)
    loss = loss_fn(outputs, labels)
    loss.backward()
    optimizer.step()
### PyTorch梯度累加的实现方法 在深度学习训练过程中,当硬件资源有限而无法支持较的批量小(Batch Size)时,可以采用梯度累加技术来模拟更的批量效果。以下是基于所提供的参考资料以及专业知识总结的内容。 #### 基本原理 梯度累加是指在一个完整的参数更新周期内多次积累计算得到的梯度,而不是每次前向传播后立即执行参数更新操作。具体来说,在多个小批次数据上分别计算损失函数并累计其对应的梯度,直到达到设定的小批次数目后再统一调用 `optimizer.step()` 更新模型参数[^3]。 #### 实现步骤详解 为了实现上述功能,可以通过调整标准训练循环逻辑完成如下更改: 1. **设置累积步数** 定义一个变量表示希望多少个小批次共享一次权重更新过程,比如每 4 批次做一次真正的梯度应用,则定义 `accumulation_steps=4`。 2. **修改优化器清零位置** 不再于每个 mini-batch 开始之前都清除旧有梯度 (`optimizer.zero_grad()`) ,而是仅当满足一定条件之后才重新初始化梯度状态。 3. **平均化梯度贡献** 如果启用了梯度累加机制,那么最终用于实际更新使用的单个样本对应的学习率应当适当缩小至原来的 \( \frac{1}{\text{{accumulation\_steps}}} \),从而保持整体收敛行为一致。 下面给出一段具体的 Python 示例代码展示这一流程: ```python import torch from torch import nn, optim # 初始化模型、损失函数优化器... model = YourModel() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01) accumulation_steps = 4 # 设定梯度累积步数 for data, target in dataloader: output = model(data) loss = criterion(output, target) # 将loss除以累积步数以平衡梯度规模 normalized_loss = loss / accumulation_steps normalized_loss.backward() # 反向传播但不立刻更新参数 if (step + 1) % accumulation_steps == 0: # 当到达指定步数时 optimizer.step() # 进行参数更新 optimizer.zero_grad() # 清空梯度 step += 1 ``` 以上脚本展示了如何通过简单的改动让程序具备梯度累加能力的同时维持原有性能表现^。 需要注意的是,在某些特殊场景下可能还需要额外考虑其他因素的影响,例如动态变化的学习速率策略或者不同层之间存在差异化的正则项系数等情况下的处理方式可能会更加复杂一些。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值