EE5407: 时空无线通信 OFDM 单载波循环前缀 (SCCP)

20210408
频率选择性衰落

数据块的符号个数N > 循环前缀的符号个数P
x = [ x ( 0 ) , x ( 1 ) , ⋯   , x ( N − 1 ) ] T \mathbf{x}=[x(0), x(1), \cdots, x(N-1)]^{T} x=[x(0),x(1),,x(N1)]T N × 1
c = [ x ( N − P ) , ⋯   , x ( N − 1 ) ] T \mathbf{c}=[x(N-P), \cdots, x(N-1)]^{T} c=[x(NP),,x(N1)]T P × 1
将要被发送的添加CP的数据块
x c p = [ x ( N − P ) , ⋯   , x ( N − 1 ) , x ( 0 ) , x ( 1 ) , ⋯   , x ( N − 1 ) ] T \mathbf{x}_{c p}=[x(N-P), \cdots, x(N-1), x(0), x(1), \cdots, x(N-1)]^{T} xcp=[x(NP),,x(N1),x(0),x(1),,x(N1)]T (N + P) × 1
x c p = [ x ~ ( 0 ) , ⋯   , x ~ ( P − 1 ) , x ~ ( P ) , x ~ ( P + 1 ) , ⋯   , x ~ ( P + N − 1 ) ] T \mathbf{x}_{c p}=[\tilde{x}(0), \cdots, \tilde{x}(P-1),\tilde{x}(P), \tilde{x}(P+1), \cdots, \tilde{x}(P+N-1)]^{T} xcp=[x~(0),,x~(P1),x~(P),x~(P+1),,x~(P+N1)]T (N + P) × 1
其中, x ~ ( i ) = x ~ ( i + N ) \tilde{x}(i)=\tilde{x}(i+N) x~(i)=x~(i+N) for i = 0 , ⋯   , P − 1 i=0, \cdots, P-1 i=0,,P1

x ~ ( i ) = x ( N − P + i ) \tilde{x}(i)=x(N-P+i) x~(i)=x(NP+i) for i = 0 , ⋯   , P − 1 i=0, \cdots, P-1 i=0,,P1
x ~ ( i ) = x ( i − P ) \tilde{x}(i)=x(i-P) x~(i)=x(iP) for i = P , ⋯   , P + N − 1 i=P, \cdots, P+N-1 i=P,,P+N1
x ( i ) = x ~ ( P − N + i ) x(i)=\tilde{x}(P-N+i) x(i)=x~(PN+i) for i = N − P , ⋯   , N − 1 i=N-P, \cdots, N-1 i=NP,,N1
x ( i ) = x ~ ( P + i ) x(i)=\tilde{x}(P+i) x(i)=x~(P+i) for i = 0 , ⋯   , N − 1 i=0, \cdots, N-1 i=0,,N1
x ~ ( P − 1 ) = x ~ ( P − 1 + N ) \tilde{x}(P-1)=\tilde{x}(P-1+N) x~(P1)=x~(P1+N)

h 0 , h 1 , ⋯   , h L h_{0}, h_{1}, \cdots, h_{L} h0,h1,,hL (L + 1)个
在此,L也称为信道memory (平坦信道的信道memory为L = 0)。

接收到的序列 (P+N)个
y ~ ( n ) = ∑ l = 0 L h l x ~ ( n − l ) + u ~ ( n ) \tilde{y}(n)=\sum_{l=0}^{L} h_{l} \tilde{x}(n-l)+\tilde{u}(n) y~(n)=l=0Lhlx~(nl)+u~(n) n = 0, …, P+N-1
丢弃 与CP部分相关的 P个接收信号 y ~ ( 0 ) , … , y ~ ( P − 1 ) \tilde{y}(0), \ldots, \tilde{y}(P-1) y~(0),,y~(P1)
保留 N个接收信号 y ~ ( P ) , … , y ~ ( P + N − 1 ) \tilde{y}(P), \ldots, \tilde{y}(P+N-1) y~(P),,y~(P+N1)
y ~ ( P ) = h 0 x ~ ( P − 0 ) + h 1 x ~ ( P − 1 ) + h 2 x ~ ( P − 2 ) + ⋯ = h 0 x ( 0 ) + h 1 x ( N − 1 ) + h 2 x ( N − 2 ) + ⋯ \tilde{y}(P)= h_{0} \tilde{x}(P-0)+h_{1} \tilde{x}(P-1)+h_{2} \tilde{x}(P-2)+\cdots\\ = h_{0} x(0)+h_{1} x(N-1)+h_{2} x(N-2)+\cdots y~(P)=h0x~(P0)+h1x~(P1)+h2x~(P2)+=h0x(0)+h1x(N1)+h2x(N2)+
y ~ ( P + 1 ) = h 0 x ~ ( P + 1 − 0 ) + h 1 x ~ ( P + 1 − 1 ) + h 2 x ~ ( P + 1 − 2 ) + ⋯ = h 0 x ( 1 ) + h 1 x ( 0 ) + h 2 x ( N − 1 ) + ⋯ \tilde{y}(P+1)= h_{0} \tilde{x}(P+1-0)+h_{1} \tilde{x}(P+1-1)+h_{2} \tilde{x}(P+1-2)+\cdots\\ = h_{0} x(1)+h_{1} x(0)+h_{2} x(N-1)+\cdots y~(P+1)=h0x~(P+10)+h1x~(P+11)+h2x~(P+12)+=h0x(1)+h1x(0)+h2x(N1)+
… … \ldots \ldots ……
y ~ ( P + N − 1 ) = h 0 x ~ ( P + N − 1 − 0 ) + h 1 x ~ ( P + N − 1 − 1 ) + h 2 x ~ ( P + N − 1 − 2 ) + ⋯ = h 0 x ( N − 1 ) + h 1 x ( N − 2 ) + h 2 x ( N − 3 ) + ⋯ \tilde{y}(P+N-1)= h_{0} \tilde{x}(P+N-1-0)+h_{1} \tilde{x}(P+N-1-1)+h_{2} \tilde{x}(P+N-1-2)+\cdots\\ = h_{0} x(N-1)+h_{1} x(N-2)+h_{2} x(N-3)+\cdots y~(P+N1)=h0x~(P+N10)+h1x~(P+N11)+h2x~(P+N12)+=h0x(N1)+h1x(N2)+h2x(N3)+

[ y ~ ( P ) y ~ ( P + 1 ) ⋮ y ~ ( P + N − 1 ) ] = [ h 0 0 . 0 h L h L − 1 ⋅ h 1 h 1 h 0 0 ⋅ 0 h L ⋅ h 2 ⋮ 0 . 0 h L h L − 1 . h 1 h 0 ] [ x ( 0 ) x ( 1 ) ⋮ x ( N − 1 ) ] + [ u ~ ( P + 1 ) u ~ ( P + 2 ) ⋮ u ~ ( P + N ) ] \left[\begin{array}{c}\tilde{y}(P) \\ \tilde{y}(P+1) \\ \vdots \\ \tilde{y}(P+N-1)\end{array}\right] =\left[\begin{array}{cccccccc}h_{0} & 0 & . & 0 & h_{L} & h_{L-1} & \cdot & h_{1} \\ h_{1} & h_{0} & 0 & \cdot & 0 & h_{L} & \cdot & h_{2} \\ \vdots & & & & & & & \\ 0 & . & 0 & h_{L} & h_{L-1} & . & h_{1} & h_{0}\end{array}\right]\left[\begin{array}{c}x(0) \\ x(1) \\ \vdots \\ x(N-1)\end{array}\right]+\left[\begin{array}{c}\tilde{u}(P+1) \\ \tilde{u}(P+2) \\ \vdots \\ \tilde{u}(P+N)\end{array}\right] y~(P)y~(P+1)y~(P+N1) = h0h100h0..000hLhL0hL1hL1hL.h1h1h2h0 x(0)x(1)x(N1) + u~(P+1)u~(P+2)u~(P+N)

y = H x + u \mathbf{y}=\mathbf{H x}+\mathbf{u} y=Hx+u
信道矩阵H是循环矩阵,这要归功于CP的添加

N×N循环矩阵分解

N×N循环矩阵可以分解为 H = W H Λ W \mathbf{H}=\mathbf{W}^{H} \boldsymbol{\Lambda} \mathbf{W} H=WHΛW
Λ = d i a g ( H 0 , … , H N − 1 ) ∈ C N × N \mathbf{\Lambda} =diag(H_{0}, …, H_{N-1}) \in \mathcal{C}^{N \times N} Λ=diag(H0,,HN1)CN×N是对角矩阵
H k = ∑ l = 0 L h l e − j 2 π k l N , H_{k}=\sum_{l=0}^{L} h_{l} e^{-j \frac{2 \pi k l}{N}}, Hk=l=0LhlejN2πkl, for k = 0 , ⋯   , N − 1. k=0, \cdots, N-1. k=0,,N1.是所有子载波中的信道频率响应

W ∈ C N × N \mathbf{W} \in \mathcal{C}^{N \times N} WCN×N是离散傅立叶矩阵
W = 1 N [ 1 1 ⋯ 1 1 e − j 2 π N ⋯ e − j 2 π × ( N − 1 ) N ⋯ 1 e − j 2 π × ( N − 1 ) N ⋯ e − j 2 π × ( N − 1 ) ( N − 1 ) N ] \mathbf{W}=\frac{1}{\sqrt{N}} \left[\begin{array}{cclc}1 & 1 & \cdots & 1 \\ 1 & e^{\frac{-j 2 \pi}{N}} & \cdots & e^{\frac{-j 2 \pi \times(N-1)}{N}} \\ \cdots & & & \\ 1 & e^{\frac{-j 2 \pi \times(N-1)}{N}} & \cdots & e^{\frac{-j 2 \pi \times(N-1)(N-1)}{N}} \end{array}\right] W=N 1 1111eNj2πeNj2π×(N1)1eNj2π×(N1)eNj2π×(N1)(N1)


下面证明 H = W H Λ W \mathbf{H}=\mathbf{W}^{H} \boldsymbol{\Lambda} \mathbf{W} H=WHΛW
H ~ = W H A \tilde{\mathbf{H}}=\mathbf{W}^{H} \mathbf{A} H~=WHA A = Λ W \mathbf{A}=\mathbf{\Lambda} \mathbf{W} A=ΛW
A = Λ W = 1 N [ H 0 H 0 ⋯ H 0 H 1 H 1 e − j 2 π N ⋯ H 1 e − j 2 π × ( N − 1 ) N ⋯ H N − 1 H N − 1 e − j 2 π × ( N − 1 ) N ⋯ H N − 1 e − j 2 π × ( N − 1 ) ( N − 1 ) N ] \mathbf{A}=\Lambda \mathbf{W}=\frac{1}{\sqrt{N}}\left[\begin{array}{cccc}H_{0} & H_{0} & \cdots & H_{0} \\ H_{1} & H_{1} e^{\frac{-j 2 \pi}{N}} & \cdots & H_{1} e^{-j 2 \pi \times(N-1)}{N} \\ \cdots & & & \\ H_{N-1} & H_{N-1} e^{-\frac{j 2 \pi \times(N-1)}{N}} & \cdots & H_{N-1} e^{-\frac{j 2 \pi \times(N-1)(N-1)}{N}}\end{array}\right] A=ΛW=N 1 H0H1HN1H0H1eNj2πHN1eNj2π×(N1)H0H1ej2π×(N1)NHN1eNj2π×(N1)(N1)
因为 H ~ ( : , k ) = W H A ( : , k ) \tilde{\mathbf{H}}(:, k)=\mathbf{W}^{H} \mathbf{A}(:, k) H~(:,k)=WHA(:,k)
只需要证明 H ~ ( : , k ) = H ( : , k ) \tilde{\mathbf{H}}(:, k)=\mathbf{H}(:, k) H~(:,k)=H(:,k) for k = 1 , ⋯   , N k=1, \cdots, N k=1,,N
[ H 0 H 1 ⋮ H N − 1 ] = N W [ h 0 h 1 ⋮ h L − 1 0 ⋮ 0 ] \left[\begin{array}{c}H_{0} \\ H_{1} \\ \vdots \\ H_{N-1}\end{array}\right]=\sqrt{N} \mathbf{W}\left[\begin{array}{c}h_{0} \\ h_{1} \\ \vdots \\ h_{L-1} \\ 0 \\ \vdots \\ 0\end{array}\right] H0H1HN1 =N W h0h1hL100
A ( : , 1 ) = W H ( : , 1 ) \mathbf{A}(:, 1)=\mathbf{W H}(:, 1) A(:,1)=WH(:,1)
H ~ ( : , 1 ) = W H A ( : , 1 ) = H ( : , 1 ) \tilde{\mathbf{H}}(:, 1)=\mathbf{W}^{H} \mathbf{A}(:, 1)=\mathbf{H}(:, 1) H~(:,1)=WHA(:,1)=H(:,1)

定理2
序列1 [ x ( 0 ) , x ( 1 ) , ⋯   , x ( N − 1 ) ] [x(0), x(1), \cdots, x(N-1)] [x(0),x(1),,x(N1)]
序列2 [ x ~ ( 0 ) , x ~ ( 1 ) , ⋯   , x ~ ( N − 1 ) ] [\tilde{x}(0), \tilde{x}(1), \cdots, \tilde{x}(N-1)] [x~(0),x~(1),,x~(N1)]
其傅立叶变换
序列1 [ X ( 0 ) , X ( 1 ) , ⋯   , X ( N − 1 ) ] [X(0), X(1), \cdots, X(N-1)] [X(0),X(1),,X(N1)]
序列2 [ X ~ ( 0 ) , X ~ ( 1 ) , ⋯   , X ~ ( N − 1 ) ] [\tilde{X}(0), \tilde{X}(1), \cdots, \tilde{X}(N-1)] [X~(0),X~(1),,X~(N1)]
如果序列2是序列1的循环移位版本,方法是将元素右移到m个位置,即 x ~ ( n ) = x ( ( n − m ) N ) \tilde{x}(n)=x\left((n-m)_{N}\right) x~(n)=x((nm)N),其中 ( n − m ) N (n-m)_{N} (nm)N表示周期N上的模运算,那么有
X ~ ( k ) = X ( k ) e − j 2 π k m N \tilde{X}(k)=X(k) e^{\frac{-j 2 \pi k m}{N}} X~(k)=X(k)eNj2πkm

定理2的证明:
X ~ ( k ) = ∑ n = 0 N − 1 x ~ ( n ) e − j 2 π n k N \tilde{X}(k)=\sum_{n=0}^{N-1} \tilde{x}(n) e^{\frac{-j 2 \pi n k}{N}} X~(k)=n=0N1x~(n)eNj2πnk
= ∑ n = 0 N − 1 x ( ( n − m ) N ) e − j 2 π n k N =\sum_{n=0}^{N-1} x\left((n-m)_{N}\right) e^{\frac{-j 2 \pi n k}{N}} =n=0N1x((nm)N)eNj2πnk
= ∑ n = 0 m − 1 x ( N − m + n ) e − j 2 π n k N + ∑ n = m N − 1 x ( n − m ) e − j 2 π n k N = ∑ n ′ = N − m N − 1 x ( n ′ ) e − j 2 π ( n ′ − N + m ) k N + ∑ n ′ = 0 N − m − 1 x ( n ′ ) e − j 2 π ( n ′ + m ) k N = e − j 2 π m k N ∑ n = 0 N − 1 x ( n ) e − j 2 π n k N = X ( k ) e − j 2 π m k N =\sum_{n=0}^{m-1} x(N-m+n) e^{\frac{-j 2 \pi n k}{N}} +\sum_{n=m}^{N-1} x(n-m) e^{\frac{-j 2 \pi n k}{N}}\\ =\sum_{n^{\prime}=N-m}^{N-1} x\left(n^{\prime}\right) e^{\frac{-j 2 \pi\left(n^{\prime}-N+m\right) k}{N}} +\sum_{n^{\prime}=0}^{N-m-1} x\left(n^{\prime}\right) e^{\frac{-j 2 \pi\left(n^{\prime}+m\right) k}{N}}\\ =e^{\frac{-j 2 \pi m k}{N}} \sum_{n=0}^{N-1} x(n) e^{\frac{-j 2 \pi n k}{N}}\\ =X(k) e^{\frac{-j 2 \pi m k}{N}} =n=0m1x(Nm+n)eNj2πnk+n=mN1x(nm)eNj2πnk=n=NmN1x(n)eNj2π(nN+m)k+n=0Nm1x(n)eNj2π(n+m)k=eNj2πmkn=0N1x(n)eNj2πnk=X(k)eNj2πmk

因此,通过向下移动元素m-1个位置, H ~ \tilde{\mathbf{H}} H~的第m列只是 H ~ \tilde{\mathbf{H}} H~的第1列的循环移位版本
注意,通过向下移动元素m-1个位置, H \mathbf{H} H的第m列也是 H \mathbf{H} H的第1列的循环移位版本,并且 H ~ ( : , 1 ) = H ( : , 1 ) \tilde{\mathbf{H}}(:, 1)=\mathbf{H}(:, 1) H~(:,1)=H(:,1),我们得出 H ~ = H \tilde{\mathbf{H}}=\mathbf{H} H~=H

第n个接收到的块

通常,第n个接收到的块可以表示为
y ( n ) = W H Λ W x ( n ) + u ( n ) \mathbf{y}(n)=\mathbf{W}^{H} \boldsymbol{\Lambda} \mathbf{W} \mathbf{x}(n)+\mathbf{u}(n) y(n)=WHΛWx(n)+u(n)
x ( n ) ∈ C N × 1 \mathbf{x}(n) \in \mathcal{C}^{N \times 1} x(n)CN×1是块n的发射信号向量
y ( n ) ∈ C N × 1 \mathbf{y}(n) \in \mathcal{C}^{N \times 1} y(n)CN×1是块n的接收信号向量
u ( n ) ∈ C N × 1 \mathbf{u}(n) \in \mathcal{C}^{N \times 1} u(n)CN×1是块n的AWGN向量

CP的添加使接收机设计变得简单
将分别针对OFDM和SCCP进行讨论

缺点

  1. 频谱效率损耗因子 P/(P+N)
  2. 功率损耗因子 P/(P+N)
  3. OFDM:发射信号的高峰均功率比(PAPR)需要具有大线性范围的功率放大器。

OFDM

流程
串并转换→ s ( n ) \mathbf{s}(n) s(n)→IDFT→ x ( n ) \mathbf{x}(n) x(n)→加循环前缀→并串转换→发送 时域
并串转换← s ( n ) \mathbf{s}(n) s(n)←均衡← z ( n ) \mathbf{z}(n) z(n)←DFT← y ( n ) \mathbf{y}(n) y(n)←去循环前缀←串并转换←接收 时域

y ( n ) = W H Λ W x ( n ) + u ( n ) \mathbf{y}(n)=\mathbf{W}^{H} \boldsymbol{\Lambda} \mathbf{W} \mathbf{x}(n)+\mathbf{u}(n) y(n)=WHΛWx(n)+u(n)
s ( n ) = [ s 0 ( n ) , … , s N − 1 ( n ) ] T \mathbf{s}(n)=\left[s_{0}(n), \ldots, s_{N-1}(n)\right]^{T} s(n)=[s0(n),,sN1(n)]T是N×1个带有信息的符号向量

s ( n ) \mathbf{s}(n) s(n)→IDFT→ x ( n ) = W H s ( n ) \mathbf{x}(n)=\mathbf{W}^{H} \mathbf{s}(n) x(n)=WHs(n)
发送的信号向量
z ( n ) = W y ( n ) \mathbf{z}(n)=\mathbf{W} \mathbf{y}(n) z(n)=Wy(n)←DFT← y ( n ) \mathbf{y}(n) y(n)
过滤接收到的信号向量

z ( n ) = W y ( n ) = W W H Λ W x ( n ) + W u ( n ) = Λ W W H s ( n ) + W u ( n ) = Λ s ( n ) + W u ( n ) \mathbf{z}(n)=\mathbf{W} \mathbf{y}(n)\\ =\mathbf{W} \mathbf{W}^{H} \boldsymbol{\Lambda} \mathbf{W} \mathbf{x}(n)+\mathbf{W}\mathbf{u}(n)\\ =\boldsymbol{\Lambda} \mathbf{W} \mathbf{W}^{H} \mathbf{s}(n)+\mathbf{W}\mathbf{u}(n)\\ =\boldsymbol{\Lambda} \mathbf{s}(n)+\mathbf{W}\mathbf{u}(n) z(n)=Wy(n)=WWHΛWx(n)+Wu(n)=ΛWWHs(n)+Wu(n)=Λs(n)+Wu(n)
z ( n ) = Λ s ( n ) + W u ( n ) \mathbf{z}(n)=\mathbf{\Lambda} \mathbf{s}(n)+\mathbf{W u}(n) z(n)=Λs(n)+Wu(n)
发送处理只不过是逆DFT(IDFT)
到目前为止,接收处理只是DFT
这是OFDM

OFDM将频率选择信道转换为频率平坦的SISO信道的并行
第k个子载波的输出由下式给出:
z k ( n ) = H k s k ( n ) + u ~ k ( n ) , k = 0 , … , N − 1 z_{k}(n)=H_{k} s_{k}(n)+\tilde{u}_{k}(n), \quad k=0, \ldots, N-1 zk(n)=Hksk(n)+u~k(n),k=0,,N1
u ~ k ( n ) = W ( k , : ) u ( n ) \tilde{u}_{k}(n)=\mathbf{W}(k,:) \mathbf{u}(n) u~k(n)=W(k,:)u(n)
Λ = d i a g ( H 0 , … , H N − 1 ) ∈ C N × N \mathbf{\Lambda} =diag(H_{0}, …, H_{N-1}) \in \mathcal{C}^{N \times N} Λ=diag(H0,,HN1)CN×N
简单的接收器:一键式均衡器可以应用于每个子载波输出,以恢复通过该子载波传送的传输符号。
s ^ k ( n ) = 1 H k z k ( n ) \hat{s}_{k}(n)=\frac{1}{H_{k}} z_{k}(n) s^k(n)=Hk1zk(n)
s ( n ) \mathbf{s}(n) s(n)←均衡← z ( n ) \mathbf{z}(n) z(n)

OFDM的应用非常广泛。 它已在DSL,DAB / DVB,WLAN(IEEE802.11a,11g,11n)中采用,并且可能会在第四代(4G)蜂窝通信系统中采用。

对于802.11a
N个数据块占用的带宽= 20 MHz
数据块的符号个数N = 64
1个数据块占用的带宽= 20 MHz/N = 20 MHz/64 = 312500Hz
数据块的长度= 1/312500Hz = 3.2 µs
循环前缀的长度= 0.8µs

OFDM系统的传输分集

让我们考虑一个两发射器的单接收器系统。

空频(SF)编码

Amalouti码的两个输出分配给同一OFDM块的两个连续子载波。
H k , 1 H_{k, 1} Hk,1 H k , 2 H_{k, 2} Hk,2是(从两个发射机到接收机的第k个子载波处的)信道响应
s k , 1 ( n ) s_{k, 1}(n) sk,1(n) s k , 2 ( n ) s_{k, 2}(n) sk,2(n)是在第k个子载波上,从两个发射天线发射的信号
第k个子载波的接收信号由下式给出:
z k ( n ) = H k , 1 s k , 1 ( n ) + H k , 2 s k , 2 ( n ) + u k ( n ) z_{k}(n)=H_{k, 1} s_{k, 1}(n)+H_{k, 2} s_{k, 2}(n)+u_{k}(n) zk(n)=Hk,1sk,1(n)+Hk,2sk,2(n)+uk(n)
类似地,在第(k +1)个子载波上,接收信号由下式给出:
z k + 1 ( n ) = H k + 1 , 1 s k + 1 , 1 ( n ) + H k + 1 , 2 s k + 1 , 2 ( n ) + u k + 1 ( n ) z_{k+1}(n)=H_{k+1,1} s_{k+1,1}(n)+H_{k+1,2} s_{k+1,2}(n)+u_{k+1}(n) zk+1(n)=Hk+1,1sk+1,1(n)+Hk+1,2sk+1,2(n)+uk+1(n)

因为 H k , 1 ≈ H k + 1 , 1 H_{k, 1} \approx H_{k+1,1} Hk,1Hk+1,1 H k , 2 ≈ H k + 1 , 2 H_{k, 2} \approx H_{k+1,2} Hk,2Hk+1,2
传输的信号 s k , 1 ( n ) , s k , 2 ( n ) s_{k, 1}(n), s_{k, 2}(n) sk,1(n),sk,2(n) s k + 1 , 1 ( n ) , s k + 1 , 2 ( n ) s_{k+1,1}(n), s_{k+1,2}(n) sk+1,1(n),sk+1,2(n)可以设计为Alamouti编码
这种方案称为空频编码,因为编码是在两个连续的频率子载波上完成的

空时(ST)编码

Amalouti码的两个输出分配给(对应于两个连续OFDM块的)相同子载波。
z k ( n ) = H k , 1 s k , 1 ( n ) + H k , 2 s k , 2 ( n ) + u k ( n ) z_{k}(n)=H_{k, 1} s_{k, 1}(n)+H_{k, 2} s_{k, 2}(n)+u_{k}(n) zk(n)=Hk,1sk,1(n)+Hk,2sk,2(n)+uk(n)
z k ( n + 1 ) = H k , 1 s k , 1 ( n + 1 ) + H k , 2 s k , 2 ( n + 1 ) + u k + 1 ( n ) z_{k}(n+1)=H_{k, 1} s_{k, 1}(n+1)+H_{k, 2} s_{k, 2}(n+1)+u_{k+1}(n) zk(n+1)=Hk,1sk,1(n+1)+Hk,2sk,2(n+1)+uk+1(n)
k:子载波索引
n:OFDM块索引

MIMO-OFDM

假设有Mt个发射天线和Mr接收天线。

当发射器上的CSI未知时,每个发射天线将发送一个OFDM数据流。
在接收器侧,(与每个Rx天线上的CP部分相对应的)接收信号被丢弃。
然后将丢弃CP的块传递到DFT操作
在第k个子载波处,在第1个接收天线处的接收信号由下式给出:
z k , 1 ( n ) = ∑ i = 1 M t H k , i , 1 s k , i ( n ) + u k , 1 ( n ) z_{k, 1}(n)=\sum_{i=1}^{M_{t}} H_{k, i, 1} s_{k, i}(n)+u_{k, 1}(n) zk,1(n)=i=1MtHk,i,1sk,i(n)+uk,1(n)
H k , i , 1 H_{k, i, 1} Hk,i,1是第i个发射天线到第1个接收天线,在第k个子载波处的信道响应
s k , i s_{k, i} sk,i是第i个发射天线处,第k个子载波所载的信号

然后,将所有接收天线的第k个子载波输出形成为向量,由下式给出:
z k ( n ) = H k s k ( n ) + u k ( n ) , k = 0 , … , N − 1 \mathbf{z}_{k}(n)=\mathbf{H}_{k} \mathbf{s}_{k}(n)+\mathbf{u}_{k}(n), \quad k=0, \ldots, N-1 zk(n)=Hksk(n)+uk(n),k=0,,N1
k:子载波索引
n:OFDM块索引
z k ( n ) : M r × 1 \mathbf{z}_{k}(n): M_{r} \times 1 zk(n):Mr×1
H k : M r × M t \mathbf{H}_{k}: M_{r} \times M_{t} Hk:Mr×Mt
s k ( n ) : M t × 1 \mathbf{s}_{k}(n): M_{t} \times 1 sk(n):Mt×1
u k ( n ) : M r × 1 \mathbf{u}_{k}(n): M_{r} \times 1 uk(n):Mr×1
所以总共有N个MIMO信道

MIMO-OFDM收发器设计

CSI未知情况:
每个天线发出一个数据流。
信号检测是在逐个子载波的基础上进行的
为平坦衰落信道开发的最佳(ML)和次优(ZF,MMSE,VBLAST)接收机可用于检测每个子载波中的已传输符号。

CSI已知情况:
当发射机知道CSI时,可以应用联合发射和接收波束成形来解耦每个子载波的数据流

MIMO-OFDM的应用

高吞吐量无线局域网:IEEE802.11n
MIMO-OFDM是IEEE802.11n中提出的调制方案,用于实现无线局域网的200 Mbps以上的传输。

有效负载计算:
在IEEE802.11a中
N个数据块占用的带宽= 20 MHz
数据块的符号个数N = 64
1个数据块占用的带宽= 20 MHz/N = 20 MHz/64 = 312500Hz
数据块的长度= 1/312500Hz = 3.2 µs
循环前缀的长度= 0.8µs

分配的带宽为20MHz
一个OFDM符号为3.2µs
CP长度为0.8µs
在N = 64个子载波中,只有48个数据子载波

假设峰值速率传输使用64 QAM,并且编码率为3/4。
峰值数据速率是多少?
答:峰值数据速率 = 48 ∗ 6bit/symbol ∗ 3/4 /(4µs)= 54 Mbps。
使用上述相同参数计算2×2 MIMO系统的峰值数据速率。
答:峰值数据速率为2 * 48 * 6bit/symbol ∗ 3/4 /(4µs)= 108 Mbps。
4×4呢? 答:216 Mbps。

高吞吐量无线广域网(WiMAX):IEEE802.16e
第三代长期演进(3G LTE)
第四代蜂窝系统。
MIMO OFDM无处不在…

基于单载波循环前缀 (SCCP) 的系统

OFDM
流程
串并转换→ s ( n ) \mathbf{s}(n) s(n)→IDFT→ x ( n ) \mathbf{x}(n) x(n)→加循环前缀→并串转换→发送 时域
并串转换← s ( n ) \mathbf{s}(n) s(n)←均衡← z ( n ) \mathbf{z}(n) z(n)←DFT← y ( n ) \mathbf{y}(n) y(n)←去循环前缀←串并转换←接收 时域

流程
串并转换→ s ( n ) \mathbf{s}(n) s(n)→加循环前缀→并串转换→发送
并串转换← s ( n ) \mathbf{s}(n) s(n)←IDFT←均衡← z ( n ) \mathbf{z}(n) z(n)←DFT← y ( n ) \mathbf{y}(n) y(n)←去循环前缀←串并转换←接收

x ( n ) = s ( n ) \mathbf{x}(n)=\mathbf{s}(n) x(n)=s(n)
z ( n ) = W y ( n ) \mathbf{z}(n)=\mathbf{W} \mathbf{y}(n) z(n)=Wy(n)
y ( n ) = W H Λ W x ( n ) + u ( n ) \mathbf{y}(n)=\mathbf{W}^{H} \boldsymbol{\Lambda} \mathbf{W} \mathbf{x}(n)+\mathbf{u}(n) y(n)=WHΛWx(n)+u(n)
z ( n ) = Λ W s ( n ) + W u ( n ) \mathbf{z}(n)=\mathbf{\Lambda} \mathbf{W} \mathbf{s}(n)+\mathbf{W u}(n) z(n)=ΛWs(n)+Wu(n)

发送器处理纯粹为每个块添加一个 CP。
这是单载波循环前缀 (SCCP) 系统。
上面的接收器处理只是一个 DFT 操作。
频域均衡可用于恢复传输的符号
S ( n ) = W s ( n ) \mathbf{S}(n)= \mathbf{W} \mathbf{s}(n) S(n)=Ws(n) 并使用 MMSE 或 ZF 方法估计 Sˆ(n)
使用 ˆs(n) = WHSˆ(n) 估计 s ( n ) \mathbf{s}(n) s(n)


$$

。。。。。。。。。。。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zzz的学习笔记本

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值