Multi-Cell Downlink Beamforming: Direct FP, Closed-Form FP, Weighted MMSE

Multi-User in each Cell, MISO
沈闓明代码

Direct FP

K. Shen and W. Yu, “Fractional Programming for Communication Systems—Part I: Power Control and Beamforming,” in IEEE Transactions on Signal Processing, vol. 66, no. 10, pp. 2616-2630, 15 May15, 2018, doi: 10.1109/TSP.2018.2812733.

the multidimensional quadratic transform

∑ n = 1 N ∑ k = 1 K log ⁡ 2 ( 1 + ∣ h n , n , k H w n , k ∣ 2 ∑ ( j , i ) ≠ ( n , k ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 ) \sum_{n = 1}^N {\sum_{k = 1}^K {{{\log }_2}\left( {1 + \frac{{{{\left| {{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}} \right|}^2}}}{{\sum_{(j,i) \ne (n,k)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}}} \right)} } n=1Nk=1Klog2(1+(j,i)=(n,k)hj,n,kHwj,i2+σn,k2hn,n,kHwn,k2)
the direct FP approach applies the multidimensional quadratic transform (Theorem 2) to each SINR term.
f q ( W , Y ) = ∑ ( n , k ) log ⁡ ( 1 + 2 R e { y n , k H w n , k H h n , n , k } − ∣ y n , k ∣ 2 ( ∑ ( j , i ) ≠ ( n , k ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 ) ) {f_q}\left( {{\bf{W}},{\bf{Y}}} \right) = \sum_{(n,k)} {\log \left( {1 + 2{\rm{Re}}\left\{ {y_{n,k}^H{\bf{w}}_{n,k}^H{{\bf{h}}_{n,n,k}}} \right\} - {{\left| {{y_{n,k}}} \right|}^2}\left( {\sum_{(j,i) \ne (n,k)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2} \right)} \right)} fq(W,Y)=(n,k)log(1+2Re{yn,kHwn,kHhn,n,k}yn,k2((j,i)=(n,k) hj,n,kHwj,i 2+σn,k2))

Direct FP
初始化 w n , k , ∀ n , k {\bf{w}}_{n,k}, \forall n,k wn,k,n,k
重复

  1. 更新 y n , k ⋆ = h n , n , k H w n , k ∑ ( j , i ) ≠ ( n , k ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 y_{n,k}^ \star = \frac{{{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}}}{{\sum_{(j,i) \ne (n,k)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}} yn,k=(j,i)=(n,k)hj,n,kHwj,i2+σn,k2hn,n,kHwn,k with w n , k , ∀ n , k {\bf{w}}_{n,k}, \forall n,k wn,k,n,k
  2. 给定 y n , k {y_{n,k}} yn,k,求解问题,更新 w n , k {{\bf{w}}_{n,k}} wn,k
    max ⁡ { w n , k , y n , k }      f q ( W , Y ) s . t .    ∑ k = 1 K w n , k H w n , k ≤ p ˉ n , ∀ n = 1 , … , N , \begin{array}{l} \mathop {\max }_{\left\{ {{{\bf{w}}_{n,k}},{y_{n,k}}} \right\}} \;\;{f_q}\left( {{\bf{W}},{\bf{Y}}} \right)\\ {\rm{s}}.{\rm{t}}.\; \sum_{k = 1}^K {{\bf{w}}_{n,k}^H{{\bf{w}}_{n,k}}} \le {{\bar p}_n},\forall n = 1, \ldots ,N, \end{array} max{wn,k,yn,k}fq(W,Y)s.t.k=1Kwn,kHwn,kpˉn,n=1,,N,
    the optimization problem is a convex problem of w n , k {{\bf{w}}_{n,k}} wn,k when the auxiliary variable y n , k {y_{n,k}} yn,k is held fixed.

直到 f q ( W , Y ) {f_q}\left( {{\bf{W}},{\bf{Y}}} \right) fq(W,Y)收敛

Closed-Form FP

K. Shen and W. Yu, “Fractional Programming for Communication Systems—Part I: Power Control and Beamforming,” in IEEE Transactions on Signal Processing, vol. 66, no. 10, pp. 2616-2630, 15 May15, 2018, doi: 10.1109/TSP.2018.2812733.

∑ n = 1 N ∑ k = 1 K log ⁡ 2 ( 1 + ∣ h n , n , k H w n , k ∣ 2 ∑ ( j , i ) ≠ ( n , k ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 ) \sum_{n = 1}^N {\sum_{k = 1}^K {{{\log }_2}\left( {1 + \frac{{{{\left| {{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}} \right|}^2}}}{{\sum_{(j,i) \ne (n,k)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}}} \right)} } n=1Nk=1Klog2(1+(j,i)=(n,k)hj,n,kHwj,i2+σn,k2hn,n,kHwn,k2)
Lagrangian Dual Transform (Multidimensional and Complex)
f r ( W , U ) = ∑ ( n , k ) ( log ⁡ ( 1 + u n , k ) − u n , k + ( 1 + u n , k ) ∣ h n , n , k H w n , k ∣ 2 ∑ ( j , i ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 ) {f_r}\left( {{\bf{W}},{\bf{U}}} \right) = \sum_{(n,k)} {\left( {\log \left( {1 + {u_{n,k}}} \right) - {u_{n,k}} + \left( {1 + {u_{n,k}}} \right)\frac{{{{\left| {{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}} \right|}^2}}}{{\sum_{(j,i)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}}} \right)} fr(W,U)=(n,k)(log(1+un,k)un,k+(1+un,k)(j,i)hj,n,kHwj,i2+σn,k2hn,n,kHwn,k2)
∂ ∂ u n , k f r ( W , U ) = 0 \frac{\partial }{{\partial {u_{n,k}}}}{f_r}\left( {{\bf{W}},{\bf{U}}} \right) = 0 un,kfr(W,U)=0
u n , k ⋆ = γ n , k = ∣ h n , n , k H w n , k ∣ 2 ∑ ( j , i ) ≠ ( n , k ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 ∈ R 1 u_{n,k}^ \star = {\gamma _{n,k}} = \frac{{{{\left| {{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}} \right|}^2}}}{{\sum_{(j,i) \ne (n,k)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}} \in {{\mathbb{R}}^1} un,k=γn,k=(j,i)=(n,k)hj,n,kHwj,i2+σn,k2hn,n,kHwn,k2R1
Quadratic Transform (Multidimensional)
f q ( W , U , V ) = ∑ ( n , k ) ( 2 ( 1 + u n , k ) R e { w n , k H h n , n , k v n , k } − ∣ v n , k ∣ 2 ( ∑ ( j , i ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 ) ) + c o n s t ( U ) {f_q}\left( {{\bf{W}},{\bf{U}},{\bf{V}}} \right) = \sum_{(n,k)} {\left( {2\sqrt {(1 + {u_{n,k}})} {\rm{Re}}\left\{ {{\bf{w}}_{n,k}^H{{\bf{h}}_{n,n,k}}{v_{n,k}}} \right\} - {{\left| {{v_{n,k}}} \right|}^2}\left( {\sum_{(j,i)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2} \right)} \right)} + {\rm{const}}({\bf{U}}) fq(W,U,V)=(n,k)(2(1+un,k) Re{wn,kHhn,n,kvn,k}vn,k2((j,i) hj,n,kHwj,i 2+σn,k2))+const(U)
∂ ∂ v n , k f q ( W , U , V ) = 0 \frac{\partial }{{\partial {v_{n,k}}}}{f_q}\left( {{\bf{W}},{\bf{U}},{\bf{V}}} \right) = 0 vn,kfq(W,U,V)=0
v n , k ⋆ = ( 1 + u n , k ) h n , n , k H w n , k ∑ ( j , i ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 v_{n,k}^ \star = \frac{{\sqrt {(1 + {u_{n,k}})} {\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}}}{{\sum_{(j,i)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}} vn,k=(j,i)hj,n,kHwj,i2+σn,k2(1+un,k) hn,n,kHwn,k

Transformed Problem
max ⁡ { w n , k }      f q ( W , U , V ) s . t .    p ˉ n − ∑ k = 1 K w n , k H w n , k ≥ 0 , ∀ n = 1 , … , N , \begin{array}{l} \mathop {\max }_{\left\{ {{{\bf{w}}_{n,k}}} \right\}} \;\;{f_q}\left( {{\bf{W}},{\bf{U}},{\bf{V}}} \right)\\ {\rm{s}}.{\rm{t}}.\;{{\bar p}_n} - \sum_{k = 1}^K {{\bf{w}}_{n,k}^H{{\bf{w}}_{n,k}}} \ge 0,\forall n = 1, \ldots ,N, \end{array} max{wn,k}fq(W,U,V)s.t.pˉnk=1Kwn,kHwn,k0,n=1,,N,

the Lagrangian function

L ( W , U , V , η ) = f q ( W , U , V ) + ∑ n = 1 N η n ( p ˉ n − ∑ k = 1 K w n , k H w n , k ) L({\bf{W}},{\bf{U}},{\bf{V}},{\bm{\eta}}) = {f_q}({\bf{W}},{\bf{U}},{\bf{V}}) + \sum_{n = 1}^N {{\eta _n}\left( {{{\bar p}_n} - \sum_{k = 1}^K {{\bf{w}}_{n,k}^H{{\bf{w}}_{n,k}}} } \right)} L(W,U,V,η)=fq(W,U,V)+n=1Nηn(pˉnk=1Kwn,kHwn,k)

the Lagrange dual function: maximizing the Lagrangian

g ( η ) = m a x { w n , k }    L ( W , U , V , η ) g\left( {\bm{\eta}} \right) = \mathop {{\rm{max}}}_{\left\{ {{{\bf{w}}_{n,k}}} \right\}} \;L({\bf{W}},{\bf{U}},{\bf{V}},{\bm{\eta}}) g(η)=max{wn,k}L(W,U,V,η)
∂ ∂ w n , k L ( W , U , V , η ) = 0 ⇒ \frac{\partial }{{\partial {{\bf{w}}_{n,k}}}}L({\bf{W}},{\bf{U}},{\bf{V}},{\bm{\eta}}) = 0 \Rightarrow wn,kL(W,U,V,η)=0
w n , k ∗ = ( ∑ ( m , l ) ( h n , m , l v m , l v m , l H h n , m , l H ) + η n I ) − 1 ( 1 + u n , k ) h n , n , k v n , k {\bf{w}}_{n,k}^* = {\left( {\sum\limits_{(m,l)} {\left( {{{\bf{h}}_{n,m,l}}{v_{m,l}}v_{m,l}^H{\bf{h}}_{n,m,l}^H} \right)} + {\eta _n}{\bf{I}}} \right)^{ - 1}}\sqrt {(1 + {u_{n,k}})} {{\bf{h}}_{n,n,k}}{v_{n,k}} wn,k=((m,l)(hn,m,lvm,lvm,lHhn,m,lH)+ηnI)1(1+un,k) hn,n,kvn,k

the Lagrange dual problem: minimizing the Lagrange dual function

Lagrange multipliers are component-wise non-negative
m i n η ≥ 0 g ( η ) \mathop {{\rm{min}}}_{{\bm{\eta}} \ge 0} g\left( {\bm{\eta}} \right) minη0g(η)

Closed-Form FP

Closed-Form FP
初始化 w n , k , ∀ n , k {\bf{w}}_{n,k}, \forall n,k wn,k,n,k
重复

  1. 更新 u n , k ⋆ = γ n , k = ∣ h n , n , k H w n , k ∣ 2 ∑ ( j , i ) ≠ ( n , k ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 ∈ R 1 u_{n,k}^ \star = {\gamma _{n,k}} = \frac{{{{\left| {{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}} \right|}^2}}}{{\sum_{(j,i) \ne (n,k)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}} \in {{\mathbb{R}}^1} un,k=γn,k=(j,i)=(n,k)hj,n,kHwj,i2+σn,k2hn,n,kHwn,k2R1 with w n , k , ∀ n , k {\bf{w}}_{n,k}, \forall n,k wn,k,n,k
  2. 更新 v n , k ⋆ = ( 1 + u n , k ) h n , n , k H w n , k ∑ ( j , i ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 v_{n,k}^ \star = \frac{{\sqrt {(1 + {u_{n,k}})} {\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}}}{{\sum_{(j,i)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}} vn,k=(j,i)hj,n,kHwj,i2+σn,k2(1+un,k) hn,n,kHwn,k with w n , k , ∀ n , k {\bf{w}}_{n,k}, \forall n,k wn,k,n,k and u n , k , ∀ n , k u_{n,k}, \forall n,k un,k,n,k
  3. 更新 η n , ∀ n {\eta _n}, \forall n ηn,n。利用二分法可以找到最小的 η n {\eta _n} ηn ,使得 ∑ k = 1 K w n , k H ( η n ) w n , k ( η n ) = p ˉ n \sum_{k = 1}^K {{\bf{w}}_{n,k}^H\left( {{\eta _n}} \right){{\bf{w}}_{n,k}}\left( {{\eta _n}} \right)} = {\bar p_n} k=1Kwn,kH(ηn)wn,k(ηn)=pˉn
    其中, w n , k ( η n ) = ( ∑ ( m , l ) ( h n , m , l v m , l v m , l H h n , m , l H ) + η n I ) − 1 ( 1 + u n , k ) h n , n , k v n , k {{\bf{w}}_{n,k}}\left( {{\eta _n}} \right) = {\left( {\sum\limits_{(m,l)} {\left( {{{\bf{h}}_{n,m,l}}{v_{m,l}}v_{m,l}^H{\bf{h}}_{n,m,l}^H} \right)} + {\eta _n}{\bf{I}}} \right)^{ - 1}}\sqrt {(1 + {u_{n,k}})} {{\bf{h}}_{n,n,k}}{v_{n,k}} wn,k(ηn)=((m,l)(hn,m,lvm,lvm,lHhn,m,lH)+ηnI)1(1+un,k) hn,n,kvn,k
  4. 更新 w n , k ∗ = ( ∑ ( m , l ) ( h n , m , l v m , l v m , l H h n , m , l H ) + η n I ) − 1 ( 1 + u n , k ) h n , n , k v n , k {\bf{w}}_{n,k}^* = {\left( {\sum\limits_{(m,l)} {\left( {{{\bf{h}}_{n,m,l}}{v_{m,l}}v_{m,l}^H{\bf{h}}_{n,m,l}^H} \right)} + {\eta _n}{\bf{I}}} \right)^{ - 1}}\sqrt {(1 + {u_{n,k}})} {{\bf{h}}_{n,n,k}}{v_{n,k}} wn,k=((m,l)(hn,m,lvm,lvm,lHhn,m,lH)+ηnI)1(1+un,k) hn,n,kvn,k with u n , k , ∀ n , k u_{n,k}, \forall n,k un,k,n,k, v n , k , ∀ n , k v_{n,k}, \forall n,k vn,k,n,k, and η n , ∀ n {\eta _n}, \forall n ηn,n

直到 f q ( W , U , V ) {f_q}\left( {{\bf{W}},{\bf{U}},{\bf{V}}} \right) fq(W,U,V)收敛

对偶变量或Lagrange multipliers的更新:KKT条件 η n ( p ˉ n − ∑ k = 1 K w n , k H w n , k ) = 0 , ∀ n = 1 , … , N , {\eta _n}\left( {{{\bar p}_n} - \sum_{k = 1}^K {{\bf{w}}_{n,k}^H{{\bf{w}}_{n,k}}} } \right) = 0,\forall n = 1, \ldots ,N, ηn(pˉnk=1Kwn,kHwn,k)=0,n=1,,N,
∑ k = 1 K w n , k H ( η n ) w n , k ( η n ) \sum_{k = 1}^K {{\bf{w}}_{n,k}^H\left( {{\eta _n}} \right){{\bf{w}}_{n,k}}\left( {{\eta _n}} \right)} k=1Kwn,kH(ηn)wn,k(ηn)是关于 η n {\eta _n} ηn的单调递减函数,利用二分法可以找到最小的 η n {\eta _n} ηn ,使得 ∑ k = 1 K w n , k H ( η n ) w n , k ( η n ) = p ˉ n \sum_{k = 1}^K {{\bf{w}}_{n,k}^H\left( {{\eta _n}} \right){{\bf{w}}_{n,k}}\left( {{\eta _n}} \right)} = {\bar p_n} k=1Kwn,kH(ηn)wn,k(ηn)=pˉn
η n < η n ∗ {\eta _n} < \eta _n^* ηn<ηn时, ∑ k = 1 K w n , k H ( η n ) w n , k ( η n ) \sum_{k = 1}^K {{\bf{w}}_{n,k}^H\left( {{\eta _n}} \right){{\bf{w}}_{n,k}}\left( {{\eta _n}} \right)} k=1Kwn,kH(ηn)wn,k(ηn) >基站最大发射功率 p ˉ n {\bar p_n} pˉn
η n = η n ∗ {\eta _n} = \eta _n^* ηn=ηn 时, ∑ k = 1 K w n , k H ( η n ) w n , k ( η n ) \sum_{k = 1}^K {{\bf{w}}_{n,k}^H\left( {{\eta _n}} \right){{\bf{w}}_{n,k}}\left( {{\eta _n}} \right)} k=1Kwn,kH(ηn)wn,k(ηn) =基站最大发射功率 p ˉ n {\bar p_n} pˉn
η n > η n ∗ {\eta _n} > \eta _n^* ηn>ηn时, ∑ k = 1 K w n , k H ( η n ) w n , k ( η n ) \sum_{k = 1}^K {{\bf{w}}_{n,k}^H\left( {{\eta _n}} \right){{\bf{w}}_{n,k}}\left( {{\eta _n}} \right)} k=1Kwn,kH(ηn)wn,k(ηn) <基站最大发射功率 p ˉ n {\bar p_n} pˉn

w ‾ n , k C F F P = ( ∑ ( j , i ) ∣ v j , i ∣ 2 h n , j , i h n , j , i H + η n I ) − 1 h n , n , k ∥ ( ∑ ( j , i ) ∣ v j , i ∣ 2 h n , j , i h n , j , i H + η n I ) − 1 h n , n , k ∥ \overline {\bf{w}} _{n,k}^{CFFP} = \frac{{{{\left( {\sum_{(j,i)} {{{\left| {{v_{j,i}}} \right|}^2}{{\bf{h}}_{n,j,i}}{\bf{h}}_{n,j,i}^H} + {\eta _n}{\bf{I}}} \right)}^{ - 1}}{{\bf{h}}_{n,n,k}}}}{{\left\| {{{\left( {\sum_{(j,i)} {{{\left| {{v_{j,i}}} \right|}^2}{{\bf{h}}_{n,j,i}}{\bf{h}}_{n,j,i}^H} + {\eta _n}{\bf{I}}} \right)}^{ - 1}}{{\bf{h}}_{n,n,k}}} \right\|}} wn,kCFFP= ((j,i)vj,i2hn,j,ihn,j,iH+ηnI)1hn,n,k ((j,i)vj,i2hn,j,ihn,j,iH+ηnI)1hn,n,k
1 + u n , k = ∑ ( j , i ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 ∑ ( j , i ) ≠ ( n , k ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 1 + {u_{n,k}} = \frac{{\sum_{(j,i)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}}{{\sum_{(j,i) \ne (n,k)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}} 1+un,k=(j,i)=(n,k)hj,n,kHwj,i2+σn,k2(j,i)hj,n,kHwj,i2+σn,k2

α n , k = ∣ v n , k ∣ 2 = ( 1 + u n , k ) ∣ h n , n , k H w n , k ∣ 2 ( ∑ ( j , i ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 ) 2 = ∑ ( j , i ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 ∑ ( j , i ) ≠ ( n , k ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 ∣ h n , n , k H w n , k ∣ 2 ( ∑ ( j , i ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 ) 2 = 1 ∑ ( j , i ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 ∣ h n , n , k H w n , k ∣ 2 ∑ ( j , i ) ≠ ( n , k ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 = γ n , k ∑ ( j , i ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 {\alpha _{n,k}} = {\left| {{v_{n,k}}} \right|^2} = \frac{{(1 + {u_{n,k}}){{\left| {{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}} \right|}^2}}}{{{{\left( {\sum_{(j,i)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2} \right)}^2}}} = \frac{{\sum_{(j,i)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}}{{\sum_{(j,i) \ne (n,k)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}}\frac{{{{\left| {{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}} \right|}^2}}}{{{{\left( {\sum_{(j,i)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2} \right)}^2}}}\\ = \frac{1}{{\sum_{(j,i)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}}\frac{{{{\left| {{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}} \right|}^2}}}{{\sum_{(j,i) \ne (n,k)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}} = \frac{{{\gamma _{n,k}}}}{{\sum_{(j,i)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}} αn,k=vn,k2=((j,i)hj,n,kHwj,i2+σn,k2)2(1+un,k)hn,n,kHwn,k2=(j,i)=(n,k)hj,n,kHwj,i2+σn,k2(j,i)hj,n,kHwj,i2+σn,k2((j,i)hj,n,kHwj,i2+σn,k2)2hn,n,kHwn,k2=(j,i)hj,n,kHwj,i2+σn,k21(j,i)=(n,k)hj,n,kHwj,i2+σn,k2hn,n,kHwn,k2=(j,i)hj,n,kHwj,i2+σn,k2γn,k

β n , k = ( 1 + u n , k ) v n , k = ∑ ( j , i ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 ∑ ( j , i ) ≠ ( n , k ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 h n , n , k H w n , k ∑ ( j , i ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 = h n , n , k H w n , k ∑ ( j , i ) ≠ ( n , k ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 {\beta _{n,k}} = \sqrt {(1 + {u_{n,k}})} {v_{n,k}} = \frac{{\sum_{(j,i)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}}{{\sum_{(j,i) \ne (n,k)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}}\frac{{{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}}}{{\sum_{(j,i)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}} = \frac{{{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}}}{{\sum_{(j,i) \ne (n,k)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}} βn,k=(1+un,k) vn,k=(j,i)=(n,k)hj,n,kHwj,i2+σn,k2(j,i)hj,n,kHwj,i2+σn,k2(j,i)hj,n,kHwj,i2+σn,k2hn,n,kHwn,k=(j,i)=(n,k)hj,n,kHwj,i2+σn,k2hn,n,kHwn,k

WMMSE和Closed-Form FP是等价的

repeat
α n , k = 1 ∑ j , i ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 ∣ h n , n , k H w n , k ∣ 2 ∑ ( j , i ) ≠ ( n , k ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 = γ n , k ∑ j , i ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 > 0 {\alpha _{n,k}} = \frac{1}{{\sum_{j,i} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}}\frac{{{{\left| {{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}} \right|}^2}}}{{\sum_{(j,i) \ne (n,k)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}} = \frac{{{\gamma _{n,k}}}}{{\sum_{j,i} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}} > 0 αn,k=j,ihj,n,kHwj,i2+σn,k21(j,i)=(n,k)hj,n,kHwj,i2+σn,k2hn,n,kHwn,k2=j,ihj,n,kHwj,i2+σn,k2γn,k>0
β n , k = h n , n , k H w n , k ∑ ( j , i ) ≠ ( n , k ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 ∈ C 1 {\beta _{n,k}} = \frac{{{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}}}{{\sum_{(j,i) \ne (n,k)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}} \in {{\mathbb{C}}^1} βn,k=(j,i)=(n,k)hj,n,kHwj,i2+σn,k2hn,n,kHwn,kC1
w n , k = β n , k ( ∑ ( j , i ) α j , i h n , j , i h n , j , i H + η n I ) − 1 h n , n , k {{\bf{w}}_{n,k}} = {\beta _{n,k}}{\left( {\sum_{(j,i)} {{\alpha _{j,i}}{{\bf{h}}_{n,j,i}}{\bf{h}}_{n,j,i}^H} + {\eta _n}{\bf{I}}} \right)^{ - 1}}{{\bf{h}}_{n,n,k}} wn,k=βn,k((j,i)αj,ihn,j,ihn,j,iH+ηnI)1hn,n,k
end

其中
w ‾ n , k = w n , k / ∥ w n , k ∥ = ( ∑ ( j , i ) α j , i h n , j , i h n , j , i H + η n I ) − 1 h n , n , k ∥ ( ∑ ( j , i ) α j , i h n , j , i h n , j , i H + η n I ) − 1 h n , n , k ∥ {\overline {\bf{w}} _{n,k}} = {{\bf{w}}_{n,k}}/\left\| {{{\bf{w}}_{n,k}}} \right\| = \frac{{{{\left( {\sum_{(j,i)} {{\alpha _{j,i}}{{\bf{h}}_{n,j,i}}{\bf{h}}_{n,j,i}^H} + {\eta _n}{\bf{I}}} \right)}^{ - 1}}{{\bf{h}}_{n,n,k}}}}{{\left\| {{{\left( {\sum_{(j,i)} {{\alpha _{j,i}}{{\bf{h}}_{n,j,i}}{\bf{h}}_{n,j,i}^H} + {\eta _n}{\bf{I}}} \right)}^{ - 1}}{{\bf{h}}_{n,n,k}}} \right\|}} wn,k=wn,k/wn,k= ((j,i)αj,ihn,j,ihn,j,iH+ηnI)1hn,n,k ((j,i)αj,ihn,j,ihn,j,iH+ηnI)1hn,n,k
p n , k = w n , k H w n , k = ∥ w n , k ∥ 2 = ∣ β n , k ∣ 2 ∥ ( ∑ ( j , i ) α j , i h n , j , i h n , j , i H + η n I ) − 1 h n , n , k ∥ 2 > 0 {p_{n,k}} = {\bf{w}}_{n,k}^H{{\bf{w}}_{n,k}} = {\left\| {{{\bf{w}}_{n,k}}} \right\|^2} = {\left| {{\beta _{n,k}}} \right|^2}{\left\| {{{\left( {\sum_{(j,i)} {{\alpha _{j,i}}{{\bf{h}}_{n,j,i}}{\bf{h}}_{n,j,i}^H} + {\eta _n}{\bf{I}}} \right)}^{ - 1}}{{\bf{h}}_{n,n,k}}} \right\|^2} > 0 pn,k=wn,kHwn,k=wn,k2=βn,k2 ((j,i)αj,ihn,j,ihn,j,iH+ηnI)1hn,n,k 2>0

γ n , k ≪ p ˉ n / σ n , k 2 {\gamma _{n,k}} \ll {{\bar p}_n}/\sigma _{n,k}^2 γn,kpˉn/σn,k2
∑ j , i ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 ≥ σ n , k 2 ≪ 1 \sum\limits_{j,i} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2 \ge \sigma _{n,k}^2 \ll 1 j,i hj,n,kHwj,i 2+σn,k2σn,k21
α n , k ≪ p ˉ n / σ n , k 2 / σ n , k 2 ≫ p ˉ n / σ n , k 2 {\alpha _{n,k}} \ll {{\bar p}_n}/\sigma _{n,k}^2/\sigma _{n,k}^2 \gg {{\bar p}_n}/\sigma _{n,k}^2 αn,kpˉn/σn,k2/σn,k2pˉn/σn,k2

Weighted MMSE

hm,n,k denote the downlink channel between BS m and UE k in cell n
wn,k denote the beamformer for UE k in cell n
the optimum Lagrange multiplier μ n ⋆ \mu _n^ \star μn can be determined efficiently by a bisection search method.
u n , k = h n , n , k H w n , k ∑ ( m , j ) ∣ h m , n , k H w m , j ∣ 2 + σ n , k 2 ∈ C 1 {u_{n,k}} = \frac{{{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}}}{{\sum_{(m,j)} {{{\left| {{\bf{h}}_{m,n,k}^H{{\bf{w}}_{m,j}}} \right|}^2}} + \sigma _{n,k}^2}} \in {{\mathbb{C}}^1} un,k=(m,j)hm,n,kHwm,j2+σn,k2hn,n,kHwn,kC1(图中h的下标打错了)
v n , k = 1 / ( 1 − u n , k H h n , n , k H w n , k ) ∈ R 1 {v_{n,k}} = 1/\left( {1 - u_{n,k}^H{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}} \right) \in {{\mathbb{R}}^1} vn,k=1/(1un,kHhn,n,kHwn,k)R1
w n , k = ( ∑ ( m , l ) ( u m , l u m , l H v m , l h n , m , l h n , m , l H ) + η n I ) − 1 h n , n , k u n , k v n , k {{\bf{w}}_{n,k}} = {\left( {\sum\limits_{(m,l)} {\left( {{u_{m,l}}u_{m,l}^H{v_{m,l}}{{\bf{h}}_{n,m,l}}{\bf{h}}_{n,m,l}^H} \right)} + {\eta _n}{\bf{I}}} \right)^{ - 1}}{{\bf{h}}_{n,n,k}}{u_{n,k}}{v_{n,k}} wn,k=((m,l)(um,lum,lHvm,lhn,m,lhn,m,lH)+ηnI)1hn,n,kun,kvn,k
w ‾ n , k W M M S E = ( ∑ ( j , i ) ∣ u j , i ∣ 2 v j , i h n , j , i h n , j , i H + η n I ) − 1 h n , n , k ∥ ( ∑ ( j , i ) ∣ u j , i ∣ 2 v j , i h n , j , i h n , j , i H + η n I ) − 1 h n , n , k ∥ \overline {\bf{w}} _{n,k}^{WMMSE} = \frac{{{{\left( {\sum_{(j,i)} {{{\left| {{u_{j,i}}} \right|}^2}{v_{j,i}}{{\bf{h}}_{n,j,i}}{\bf{h}}_{n,j,i}^H} + {\eta _n}{\bf{I}}} \right)}^{ - 1}}{{\bf{h}}_{n,n,k}}}}{{\left\| {{{\left( {\sum_{(j,i)} {{{\left| {{u_{j,i}}} \right|}^2}{v_{j,i}}{{\bf{h}}_{n,j,i}}{\bf{h}}_{n,j,i}^H} + {\eta _n}{\bf{I}}} \right)}^{ - 1}}{{\bf{h}}_{n,n,k}}} \right\|}} wn,kWMMSE= ((j,i)uj,i2vj,ihn,j,ihn,j,iH+ηnI)1hn,n,k ((j,i)uj,i2vj,ihn,j,ihn,j,iH+ηnI)1hn,n,k

Weighted MMSE
其中, ∣ u j , i ∣ 2 v j , i > 0 {\left| {{u_{j,i}}} \right|^2}{v_{j,i}} > 0 uj,i2vj,i>0,因为
0 < ∣ h n , n , k H w n , k ∣ 2 ∑ ( m , j ) ∣ h m , n , k H w m , j ∣ 2 + σ n , k 2 < 1 0<\frac{{{{\left| {{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}} \right|}^2}}}{{\sum_{(m,j)} {{{\left| {{\bf{h}}_{m,n,k}^H{{\bf{w}}_{m,j}}} \right|}^2}} + \sigma _{n,k}^2}} < 1 0<(m,j)hm,n,kHwm,j2+σn,k2hn,n,kHwn,k2<1
v n , k = 1 / ( 1 − ∣ h n , n , k H w n , k ∣ 2 ∑ ( m , j ) ∣ h m , n , k H w m , j ∣ 2 + σ n , k 2 ) > 1 > 0 {v_{n,k}} = 1/\left( {1 - \frac{{{{\left| {{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}} \right|}^2}}}{{\sum_{(m,j)} {{{\left| {{\bf{h}}_{m,n,k}^H{{\bf{w}}_{m,j}}} \right|}^2}} + \sigma _{n,k}^2}}} \right) > 1>0 vn,k=1/(1(m,j)hm,n,kHwm,j2+σn,k2hn,n,kHwn,k2)>1>0

α n , k = ∣ u n , k ∣ 2 v n , k = ∣ h n , n , k H w n , k ∣ 2 ( ∑ ( m , j ) ∣ h m , n , k H w m , j ∣ 2 + σ n , k 2 ) 2 1 1 − ∣ h n , n , k H w n , k ∣ 2 ∑ ( m , j ) ∣ h m , n , k H w m , j ∣ 2 + σ n , k 2 = ∣ h n , n , k H w n , k ∣ 2 ( ∑ ( m , j ) ∣ h m , n , k H w m , j ∣ 2 + σ n , k 2 ) 2 ∑ ( m , j ) ∣ h m , n , k H w m , j ∣ 2 + σ n , k 2 ∑ ( m , j ) ∣ h m , n , k H w m , j ∣ 2 + σ n , k 2 − ∣ h n , n , k H w n , k ∣ 2 = γ n , k ∑ ( m , j ) ∣ h m , n , k H w m , j ∣ 2 + σ n , k 2 {\alpha _{n,k}} = {\left| {{u_{n,k}}} \right|^2}{v_{n,k}} = \frac{{{{\left| {{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}} \right|}^2}}}{{{{\left( {\sum_{(m,j)} {{{\left| {{\bf{h}}_{m,n,k}^H{{\bf{w}}_{m,j}}} \right|}^2}} + \sigma _{n,k}^2} \right)}^2}}}\frac{1}{{1 - \frac{{{{\left| {{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}} \right|}^2}}}{{\sum_{(m,j)} {{{\left| {{\bf{h}}_{m,n,k}^H{{\bf{w}}_{m,j}}} \right|}^2}} + \sigma _{n,k}^2}}}}\\ = \frac{{{{\left| {{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}} \right|}^2}}}{{{{\left( {\sum_{(m,j)} {{{\left| {{\bf{h}}_{m,n,k}^H{{\bf{w}}_{m,j}}} \right|}^2}} + \sigma _{n,k}^2} \right)}^2}}}\frac{{\sum_{(m,j)} {{{\left| {{\bf{h}}_{m,n,k}^H{{\bf{w}}_{m,j}}} \right|}^2}} + \sigma _{n,k}^2}}{{\sum_{(m,j)} {{{\left| {{\bf{h}}_{m,n,k}^H{{\bf{w}}_{m,j}}} \right|}^2}} + \sigma _{n,k}^2 - {{\left| {{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}} \right|}^2}}} = \frac{{{\gamma _{n,k}}}}{{\sum_{(m,j)} {{{\left| {{\bf{h}}_{m,n,k}^H{{\bf{w}}_{m,j}}} \right|}^2}} + \sigma _{n,k}^2}} αn,k=un,k2vn,k=((m,j)hm,n,kHwm,j2+σn,k2)2hn,n,kHwn,k21(m,j)hm,n,kHwm,j2+σn,k2hn,n,kHwn,k21=((m,j)hm,n,kHwm,j2+σn,k2)2hn,n,kHwn,k2(m,j)hm,n,kHwm,j2+σn,k2hn,n,kHwn,k2(m,j)hm,n,kHwm,j2+σn,k2=(m,j)hm,n,kHwm,j2+σn,k2γn,k

β n , k = u n , k v n , k = u n , k / ( 1 − u n , k H h n , n , k H w n , k ) = h n , n , k H w n , k ∑ ( m , j ) ∣ h m , n , k H w m , j ∣ 2 + σ n , k 2 / ( 1 − ∣ h n , n , k H w n , k ∣ 2 ∑ ( m , j ) ∣ h m , n , k H w m , j ∣ 2 + σ n , k 2 ) = h n , n , k H w n , k ∑ ( m , j ) ∣ h m , n , k H w m , j ∣ 2 + σ n , k 2 / ∑ ( j , i ) ≠ ( n , k ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 ∑ ( m , j ) ∣ h m , n , k H w m , j ∣ 2 + σ n , k 2 = h n , n , k H w n , k ∑ ( j , i ) ≠ ( n , k ) ∣ h j , n , k H w j , i ∣ 2 + σ n , k 2 {\beta _{n,k}} = {u_{n,k}}{v_{n,k}} = {u_{n,k}}/\left( {1 - u_{n,k}^H{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}} \right)\\ = \frac{{{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}}}{{\sum_{(m,j)} {{{\left| {{\bf{h}}_{m,n,k}^H{{\bf{w}}_{m,j}}} \right|}^2}} + \sigma _{n,k}^2}}/\left( {1 - \frac{{{{\left| {{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}} \right|}^2}}}{{\sum_{(m,j)} {{{\left| {{\bf{h}}_{m,n,k}^H{{\bf{w}}_{m,j}}} \right|}^2}} + \sigma _{n,k}^2}}} \right)\\ = \frac{{{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}}}{{\sum_{(m,j)} {{{\left| {{\bf{h}}_{m,n,k}^H{{\bf{w}}_{m,j}}} \right|}^2}} + \sigma _{n,k}^2}}/\frac{{\sum_{(j,i) \ne (n,k)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}}{{\sum_{(m,j)} {{{\left| {{\bf{h}}_{m,n,k}^H{{\bf{w}}_{m,j}}} \right|}^2}} + \sigma _{n,k}^2}}\\ = \frac{{{\bf{h}}_{n,n,k}^H{{\bf{w}}_{n,k}}}}{{\sum_{(j,i) \ne (n,k)} {{{\left| {{\bf{h}}_{j,n,k}^H{{\bf{w}}_{j,i}}} \right|}^2}} + \sigma _{n,k}^2}} βn,k=un,kvn,k=un,k/(1un,kHhn,n,kHwn,k)=(m,j)hm,n,kHwm,j2+σn,k2hn,n,kHwn,k/(1(m,j)hm,n,kHwm,j2+σn,k2hn,n,kHwn,k2)=(m,j)hm,n,kHwm,j2+σn,k2hn,n,kHwn,k/(m,j)hm,n,kHwm,j2+σn,k2(j,i)=(n,k)hj,n,kHwj,i2+σn,k2=(j,i)=(n,k)hj,n,kHwj,i2+σn,k2hn,n,kHwn,k

原论文

Q. Shi, M. Razaviyayn, Z. -Q. Luo and C. He, “An Iteratively Weighted MMSE Approach to Distributed Sum-Utility Maximization for a MIMO Interfering Broadcast Channel,” in IEEE Transactions on Signal Processing, vol. 59, no. 9, pp. 4331-4340, Sept. 2011, doi: 10.1109/TSP.2011.2147784.

Weighted MMSE
V i k {{\bf{V}}_{{i_k}}} Vik 表示基站k对用户 i k {i_k} ik 的波束成形
H i k , j {{\bf{H}}_{{i_k},j}} Hik,j 表示从基站j到用户 i k {i_k} ik的信道
u k , i = h k , k , i H w k , i ∑ ( j , l ) ∣ h j , k , i H w j , l ∣ 2 + σ k , i 2 {u_{k,i}} = \frac{{{\bf{h}}_{k,k,i}^H{{\bf{w}}_{k,i}}}}{{\sum_{(j,l)} {{{\left| {{\bf{h}}_{j,k,i}^H{{\bf{w}}_{j,l}}} \right|}^2}} + \sigma _{k,i}^2}} uk,i=(j,l)hj,k,iHwj,l2+σk,i2hk,k,iHwk,i

  • 12
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Uplink-downlink timing relation指的是上行和下行信道之间的时序关系。根据引用中的信息,UE在TAC中解析出来的测量量N_TA以及N_TA, offset是根据不同的频段、子载波间隔而变化的定值。具体的数值可以参考3GPP TS38.133 Chapter 7.1。 根据引用中的图示,TRP侧的上行子帧和下行子帧的timing是相同的,而UE侧的上行子帧和下行子帧的timing之间存在偏移。不同的UE具有各自不同的TA值,即定时提前量。需要注意的是,定时提前量是两倍的传输时间量,有时也被称为RTT(round trip time)。 根据引用的信息,根据载波的TA值,UE可以获悉通过该载波发送上行信道需要的时间提前量,以使通过该载波发送的上行信道到达TRP的时间与其设定时间一致,从而完成UE的上行传输时间同步。根据载波的TA值的不同,可以将载波分成不同的定时提前组,每个组内的载波的TA值相同。 因此,Uplink-downlink timing relation涉及到各个UE的定时提前量以及上行和下行信道之间的时序关系。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [LTE-5G学习笔记32--5G NR 定时提前:从协议信令到算法实现](https://blog.csdn.net/u011292087/article/details/101756966)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zzz的学习笔记本

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值