傅里叶谱方法-傅里叶谱方法求解二维浅水方程组和二维粘性 Burgers 方程及其Matlab程序实现

3.3.2 二维浅水方程组

二维浅水方程组是描述水波运动的基本方程之一。它主要用于描述近岸浅水区域内的波浪、潮汐等水动力学现象。这个方程组由两个偏微分方程组成,一个是质量守恒方程,另一个是动量守恒方程。浅水方程描述了具有自由表面、密度均匀、深度较浅的液体在重力作用下的流动过程, 用于研究潮波和河流,具体形式如下:
{ ∂ η ∂ t = − ∂ ( η u ) ∂ x − ∂ ( η v ) ∂ y ∂ u ∂ t = − v ∂ u ∂ y − u ∂ u ∂ x − g ∂ η ∂ x ∂ v ∂ t = − u ∂ v ∂ x − v ∂ v ∂ y − g ∂ η ∂ y (3-34) \left\{\begin{array}{l} \frac{\partial \eta}{\partial t}=-\frac{\partial(\eta u)}{\partial x}-\frac{\partial(\eta v)}{\partial y} \\ \frac{\partial u}{\partial t}=-v \frac{\partial u}{\partial y}-u \frac{\partial u}{\partial x}-g \frac{\partial \eta}{\partial x} \\ \frac{\partial v}{\partial t}=-u \frac{\partial v}{\partial x}-v \frac{\partial v}{\partial y}-g \frac{\partial \eta}{\partial y} \end{array}\right.\tag{3-34} tη=x(ηu)y(ηv)tu=vyuuxugxηtv=uxvvyvgyη(3-34)
其中, η \eta η 代表水深, t t t 为时间, x x x y y y 是水平面上的坐标, u 、 v u 、 v uv x x x y y y 方向上的流速, g g g 为重力加速度。物理上,这个方程组描述了水波在浅水区域内的传播和运动。它假设水深相对于波长很小,即波长远大于水深,这样就可以近似将水流速度视为垂直于水深方向的,这被称为“浅水近似”。

在实际应用中,二维浅水方程组被广泛用于预测海洋和河流等水动力学现象。例如,可以用它来预测风浪的形成和演变,或者用它来优化海岸线防护结构的设计。

需要注意的是,二维浅水方程组是一种近似模型,它对真实的水动力学现象只能提供近似的描述,实际情况可能更加复杂。因此,在具体应用中,需要根据实际情况选择合适的模型并对其进行修正和调整。对方程组 (3-34) 的等号两边做 x − y x-y xy 空间上的二维傅里叶变换, 得到偏微分方程组:
{ ∂ η ^ ^ ∂ t = − i k x F { F − 1 [ η ^ ^ ] F − 1 [ u ~ ^ ] } − i k y F { F − 1 [ η ~ ^ ] F − 1 [ v ^ ] } ∂ u ^ ^ ∂ t = − F { F − 1 [ v ^ ^ ] ⋅ F − 1 [ i k y u ^ ^ ] + F − 1 [ u ⃗ ^ ] ⋅ F − 1 [ i k x u ^ ] } − i g k x η ^ ^ ∂ v ^ ∂ t = − F { F − 1 [ u ^ ] ⋅ F − 1 [ i k x v ^ ] + F − 1 [ v ^ ] ⋅ F − 1 [ i k y v ^ ] } − i g k y η ^ ^ (3-35) \left\{\begin{array}{l} \frac{\partial \hat{\hat{\eta}}}{\partial t}=-\mathrm{i} k_x F\left\{F^{-1}[\hat{\hat{\eta}}] F^{-1}[\hat{\tilde{u}}]\right\}-\mathrm{i} k_y F\left\{F^{-1}[\hat{\tilde{\eta}}] F^{-1}[\hat{v}]\right\} \\ \frac{\partial \hat{\hat{u}}}{\partial t}=-F\left\{F^{-1}[\hat{\hat{v}}] \cdot F^{-1}\left[\mathrm{i} k_y \hat{\hat{u}}\right]+F^{-1}[\hat{\vec{u}}] \cdot F^{-1}\left[\mathrm{i} k_x \hat{u}\right]\right\}-\mathrm{i} g k_x \hat{\hat{\eta}} \\ \frac{\partial \hat{v}}{\partial t}=-F\left\{F^{-1}[\hat{u}] \cdot F^{-1}\left[\mathrm{i} k_x \hat{v}\right]+F^{-1}[\hat{v}] \cdot F^{-1}\left[\mathrm{i} k_y \hat{v}\right]\right\}-\mathrm{i} g k_y \hat{\hat{\eta}} \end{array}\right.\tag{3-35} tη^^=ikxF{F1[η^^]F1[u~^]}ikyF{F1[η~^]F1[v^]}tu^^=F{F1[v^^]F1[ikyu^^]+F1[u ^]F1[ikxu^]}igkxη^^tv^=F{F1[u^]F1[ikxv^]+F1[v^]F1[ikyv^]}igkyη^^(3-35)
g = 1 g=1 g=1, 初始条件为 η ( x , y , 0 ) = 0.1 ⋅ exp ⁡ ( − x 2 / 10 − y 2 / 10 ) + 0.1 \eta(x, y, 0)=0.1 \cdot \exp \left(-x^2 / 10-y^2 / 10\right)+0.1 η(x,y,0)=0.1exp(x2/10y2/10)+0.1 u ( x , y , 0 ) = v ( x , y , 0 ) = 0 u(x, y, 0)=v(x, y, 0)=0 u(x,y,0)=v(x,y,0)=0, 用傅里叶谱方法计算上述方程的代码如下:

主程序代码:

clear all; close all;
L=40; N=64;
x=L/N*[-N/2:N/2-1]; y=x;
kx=2*pi/L*[0:N/2-1 -N/2:-1]; ky=kx;
[X,Y]=meshgrid(x,y);
[kX,kY]=meshgrid(kx,ky);
%初始条件
e=0.1*exp(-X.^2/10-Y.^2/10)+0.1;
et=fft2(e); ut=zeros(N^2,1); vt=zeros(N^2,1);
euvt=[et(:); ut; vt;];
%求解
t=[0 5 10 25]; g=1;
[t,euvtsol]=ode45('shallow_water',t,euvt,[],kX,kY,N,g);
%画图
for n=1:4
    subplot(2,2,n)
    mesh(x,y,real(ifft2(reshape(euvtsol(n,1:N^2),N,N))))
    axis([-20 20 -20 20 0.1 0.2]), title(['t=' num2str(t(n))])
    xlabel x, ylabel y, zlabel \eta, view(-80,45)
end

程序输出结果如图所示, 从 t = 0 t=0 t=0 时刻开始, 一个三维高斯形水柱在重力的作用下坍塌, 并激起了向四周传播的圆形水波。
浅水方程的计算结果

3.3.3 二维粘性 Burgers 方程

Burgers方程是一种非线性偏微分方程,它最初由荷兰数学家J. M. Burgers在20世纪30年代提出,用于描述一维粘性流体中的流动行为。

Burgers方程在物理学中具有广泛的应用。它可以用于模拟一维粘性流体中的多种现象,如激波、涡旋、湍流等。在流体力学中,Burgers方程常用于模拟流体中的湍流现象,如湍流尾流、湍流边界层等。在量子场论中,Burgers方程被用于描述费米子系统中的量子涡旋。

Burgers方程还是一些数值方法和数学工具的基础,如Shocks-capturing方法、Lax-Friedrichs格式等。这些方法可以有效地处理Burgers方程中出现的激波等非线性现象,从而得到比较精确的数值解。

Burgers方程也是非线性动力学中一个重要的模型。它的解可能会出现奇点和激波等非线性现象,这些现象为非线性偏微分方程的研究提供了新的思路和挑战。通过对Burgers方程的研究,可以深入了解非线性动力学中的一些重要现象和性质。

此外,Burgers方程还被应用于宏观经济学中的一些问题,如经济增长、通货膨胀等。通过对Burgers方程的应用,可以揭示一些经济现象的本质规律和机制。

除了上述介绍的应用和研究方向,Burgers方程还有以下一些特点和性质:

Burgers方程是一种具有非线性扰动传递性的方程。这意味着,当一个扰动在Burgers方程中传播时,它会不断地变形和扩散,从而形成复杂的结构。

Burgers方程可以通过一些数学方法和技巧来求解。其中比较常用的方法包括Burgers方程的相似变换、行波解法和反演公式等。
Burgers方程的解可能会出现激波、奇点等非线性现象。这些现象具有一定的物理意义,并且对于解决实际问题具有重要的作用。

Burgers方程可以被看作是Navier-Stokes方程的一维版本,它描述了粘性流体中的一些基本特性和行为。因此,Burgers方程在流体力学中有着重要的应用和研究价值。

Burgers方程还可以被拓展到更高维度或者更复杂的情形下。例如,二维Burgers方程、Burgers-Fisher方程等。

总之,Burgers方程在物理学、数学和工程学等领域具有广泛的应用和研究价值,它的研究和应用也带动了非线性动力学和偏微分方程等领域的发展。

Burgers 方程有钟行孤波和扭波两种形式的行波解(如图)

二维粘性 Burgers 方程的形式如下:
∂ u ∂ t = v ( ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 ) u − u ( ∂ ∂ x + ∂ ∂ y ) u (3-36) \frac{\partial u}{\partial t}=v\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}\right) u-u\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right) u\tag{3-36} tu=v(x22+y22)uu(x+y)u(3-36)
其中, u u u 代表速度, x 、 y x 、 y xy 为空间坐标, t t t 为时间, v v v 为粘性系数。对上式做二维傅里叶变换, 得:

∂ u ^ ^ ∂ t = − v ( k x 2 + k y 2 ) u ^ ^ − F { F − 1 [ u ^ ] ⋅ F − 1 [ i ( k x + k y ) u ^ ^ ] } (3-37) \frac{\partial \hat{\hat{u}}}{\partial t}=-v\left(k_x^2+k_y^2\right) \hat{\hat{u}}-F\left\{F^{-1}[\hat{u}] \cdot F^{-1}\left[\mathrm{i}\left(k_x+k_y\right) \hat{\hat{u}}\right]\right\}\tag{3-37} tu^^=v(kx2+ky2)u^^F{F1[u^]F1[i(kx+ky)u^^]}(3-37)
v = 0.01 v=0.01 v=0.01, 初始条件 u ( x , y , 0 ) = sech ⁡ ( 4 x 2 + 4 y 2 ) u(x, y, 0)=\operatorname{sech}\left(4 x^2+4 y^2\right) u(x,y,0)=sech(4x2+4y2), 傅里叶谱方法的代码如下:

主程序代码:

clear all; close all;
L=4; N=64;
x=L/N*[-N/2:N/2-1]; y=x;
kx=2*pi/L*[0:N/2-1 -N/2:-1]; ky=kx;
[X,Y]=meshgrid(x,y);
[kX,kY]=meshgrid(kx,ky);
K2=kX.^2+kY.^2;
%初始条件
u=sech(4*X.^2+4*Y.^2);
ut=fft2(u);
%求解
v=0.01; t=0:0.4:1.2;
[t,utsol]=ode45('burgers',t,ut(:),[],N,kX,kY,K2,v);
%画图
for n=1:4
    subplot(2,2,n)
    mesh(x,y,real(ifft2(reshape(utsol(n,:),N,N))))
    axis([-2 2 -2 2 0 1]), xlabel x, ylabel y, zlabel u
    view(46,20), title(['t=' num2str(t(n))])
end

程序执行结果如图所示,初始波形逐渐演变成激波,这是符合实际情况的。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-L46WfgOw-1680611827553)(https://mweb-1307664364.cos.ap-chengdu.myqcloud.com/2023/04/04/untitled12.png)]
当Burgers方程中的初始波形是单峰的、集中在某一区域内的时候,它会随着时间的推移而逐渐演变成为一个激波。这个现象可以通过分析Burgers方程的解得到解释。

在初始时刻,Burgers方程的初始波形会随着时间的推移而扩散,并逐渐变得平缓。然而,由于Burgers方程是一个非线性方程,波形在演化过程中会发生非线性的相互作用,这些相互作用会导致波形逐渐变得不规则,并在某些区域内出现奇点。当波形的斜率超过一定阈值时,这些奇点会形成激波,即波形在激波前是平缓的,但在激波后却是陡峭的。

激波的形成可以用物理学中的震荡现象来解释。当初始波形逐渐演化为激波时,波前的部分会受到高压的压缩,而波后的部分则会受到低压的拉伸,这样就形成了一个压缩波和一个展开波,它们相互作用,最终形成了一个陡峭的激波。

总之,Burgers方程中的初始波形逐渐演变为激波的现象,是由于非线性相互作用导致的,它在物理学和工程学等领域中有着广泛的应用。

  • 1
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论
### 回答1: 嗨!首先感谢你的问题。Matlab可以使用内置函数fft进行傅里叶变换的计算。下面是一个简单的示例代码: ``` % 定义时间序列 t = linspace(0,2*pi,1000); % 定义信号 y = sin(2*pi*5*t) + cos(2*pi*10*t); % 计算傅里叶变换 Y = fft(y); % 计算频率序列 f = linspace(0,1,1000); % 绘制频图 plot(f,abs(Y)); ``` 关于傅里叶变换求解微分方程和积分方程,这是一个非常广泛的领域,Matlab在这个领域也有很多的工具箱和函数。具体的实现方法可以根据不同的方程和问题进行选择和调整。如果你有具体的问题需要求解,可以提供更多的信息,我可以为你提供更具体的帮助。 ### 回答2: Matlab是一种功能强大的科学计算软件,可以方便地实现傅里叶变换(Fourier Transform)和傅立叶级数展开(Fourier Series Expansion)。 傅里叶变换是一种将一个信号从时域(时间域)转换到频域(频率域)的数学工具,通过分析信号的频特征,可以对信号进行频分析、滤波、降噪等操作。在Matlab中,可以使用fft()函数来实现离散傅里叶变换(DFT),ifft()函数来实现离散傅里叶逆变换(IDFT),fftshift()函数用于对频进行中心化处理。 傅立叶级数展开可以将一个周期信号表示为一系列正弦和余弦函数的线性组合,它在信号分析的应用中被广泛使用。在Matlab中,可以使用FourierSeries()函数来实现傅立叶级数展开,可以指定展开的周期、频率分量的数量和振幅等参数。 傅立叶变换在偏微分方程和积分方程求解中也有重要应用。通过将偏微分方程或积分方程转化到频率域,可以简化求解过程。在Matlab中,可以通过傅里叶变换来求解时谐偏微分方程(Time-Harmonic PD Es),即偏微分方程的解具有频率依赖性质。通过将时谐偏微分方程转化为代数方程,可以使用Matlab求解器(如solve()函数)得到解析解。 对于积分方程,傅立叶变换同样可以发挥作用。可以通过将积分方程转化为代数方程,然后使用Matlab求解器进行求解。在这个过程中,使用傅里叶变换的目的是对局部波的响应进行频分析,并将问题转化为频域下的代数方程求解。 综上所述,Matlab提供了丰富的函数和工具,可以方便地实现傅里叶变换和傅立叶级数展开,并应用于偏微分方程和积分方程求解。这些功能使得Matlab成为工程学、物理学以及其他科学领域中重要的数值计算和信号处理工具。 ### 回答3: Matlab可以用来实现傅立叶变换,从而求解微分方程和积分方程。 傅立叶变换是一种重要的数学工具,可以将一个函数表示为一系列正弦和余弦函数的组合。Matlab中有现成的函数fft可以实现离散傅立叶变换(DFT),而ifft函数可以进行逆傅立叶变换。 对于偏微分方程,我们可以通过傅立叶变换将微分方程转化为代数方程。首先,我们将待求函数进行傅立叶变换,得到其频率域表示。然后,我们可以将微分方程中的导数操作转化为乘法操作,从而得到一个代数方程。通过求解这个代数方程,我们可以得到频率域中的解。最后,使用ifft函数将频率域中的解进行逆傅立叶变换,得到时域中的解。 对于积分方程,我们也可以利用傅立叶变换来求解。通过将积分方程进行傅立叶变换,可以将其转化为代数方程。然后,我们可以通过求解这个代数方程来得到频率域中的解。最后,再将频率域中的解进行逆傅立叶变换,得到时域中的解。 总之,利用Matlab中的fft和ifft函数,我们可以利用傅立叶变换来求解微分方程和积分方程。这为我们研究和解决各种数学问题提供了一种有效的方法

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

图灵猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值