高等数学,速度,路程,时间公式

本文探讨了微积分在物理学中的应用,特别是针对匀加速运动的距离公式。微分定义解释了如何通过微分求解速度-时间图形中的面积总和,而积分定义则说明了如何通过积分来纠正仅考虑最终速度时的距离计算误差。通过微积分,可以得出X=∫(v+at)dt=vt+1/2at²这一公式,揭示了求导与积分之间的逆运算关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

微分定义

即 dX=(v+at)dt(微分),[牛顿创建,即把距离在 速度-时间 图形中的面积微分成很多份,然后一点点的求总面积的和,就是微分的

积分定义

在这里插入图片描述
在这里插入图片描述
理解: 如果只用b时的速度算的话,则a时的速度所走的距离 被多算了一遍
在 速度——时间 的坐标系中,a时的速度所占用的面积被多算了一遍 所以要减去

这是物理学里面匀加速运动的距离公式,初速度为v,加速度为a,时间t
瞬时速度 dX/dt=v+at(导数),
即 dX=(v+at)dt(微分),[牛顿创建,即把距离在 速度-时间 图形中的面积微分成很多份,然后一点点的求总面积的和,就是微分的原理]
∴ X=∫(v+at)dt=vt+1/2at² (积分)
在这里插入图片描述 紧凑型推导,转变为有公式

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值