机器学习01—模型评估与选择+F-R曲线+ROC曲线详解

本文介绍了模型评估的重要性,详细讲解了经验误差与过拟合的概念,提出降低过拟合的策略。接着阐述了评估方法,如留出法、交叉验证和自助法。重点讨论了性能度量,包括P-R曲线、F1分数和ROC曲线,这些是衡量分类任务性能的关键指标。最后,提到了比较检验,如二项检验和t检验,用于确定不同模型的性能差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

经验误差与过拟合

错误率: 错分样本的占比:E = a/m
误差:样本真实输出与预测输出之间的差异
训练(经验)误差:训练集上
测试误差:测试集
泛化误差:除训练集外所有样本

由于事先并不知道新样本的特征,我们只能努力使经验误差最小化;
很多时候虽然能在训练集上做到分类错误率为零,但多数情况下这样的学习器并不好。

过拟合:
学习器把训练样本学习的“太好”,将训练样本本身的特点 当做所有样本的一般性质,导致泛化性能下降。从而导致在测试集上的预测效果比训练集差很多。
过拟合的解决办法:
1、优化目标加正则项https://blog.csdn.net/qq_42871249/article/details/104659074
2、early stop

欠拟合:
训练样本的一般性质尚未被学习器学好
决策树:拓展分支
神经网络:增加训练轮数
在这里插入图片描述

评估方法

评估原则:

现实任务中往往会对学习器的泛化性能、时间开销、存储开销、可解释性等方面的因素进行评估并做出选择

我们假设测试集是从样本真实分布中独立采样获得,将测试集上的**“测试误差”作为泛化误差的近似**,所以测试集要和训练集中的样本尽量互斥。
通常将包含个m样本的数据集D拆分成训练集S和测试集T:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值