线性代数初步

本文介绍了线性代数的基本概念,包括矩阵的定义、行和列向量、增广矩阵及其初等运算。讨论了矩阵的加法、乘法、转置以及单位矩阵。此外,还涵盖了矩阵的逆、初等矩阵和行列式的概念,以及特征值和特征向量的定义。这些内容是理解线性代数和数值分析的基础。
摘要由CSDN通过智能技术生成

线性代数入门

本文仅对OI有用部分的线性代数进行初步解析,

如果要了解练习与详细请阅读华章数学译丛 《线性代数》


矩阵

定义 A A A 为一 m × n m\times n m×n 的矩阵为

[ a 1 , 1 a 1 , 2 ⋯ a 1 , n a 1 , 2 a 2 , 2 ⋯ a 2 , n ⋮ a m , 1 a m , 2 ⋯ a m , n ] \begin{bmatrix}a_{1,1}&a_{1,2}&\cdots&a_{1,n}\\a_{1,2}&a_{2,2}&\cdots &a_{2,n}\\\vdots\\a_{m,1}&a_{m,2}&\cdots &a_{m,n}\end{bmatrix} a1,1a1,2am,1a1,2a2,2am,2a1,na2,nam,n

行、列向量

行向量: a 1 → = [ a 1 , 1 a 1 , 2 ⋯ a 1 , n ] \overrightarrow{a_1}=\begin{bmatrix}a_{1,1}&a_{1,2}&\cdots&a_{1,n}\end{bmatrix} a1 =[a1,1a1,2a1,n]

列向量: a 1 = [ a 1 , 1 a 2 , 1 ⋮ a m , 1 ] a_1=\begin{bmatrix}a_{1,1}\\a_{2,1}\\\vdots\\a_{m,1}\end{bmatrix} a1=a1,1a2,1am,1

增广矩阵:

定义 A ( m × n ) , B ( m × r ) A(m\times n),B(m\times r) A(m×n),B(m×r) ,则 ( A ∣ B ) (A|B) (AB)

[ a 1 , 1 a 1 , 2 ⋯ a 1 , n a 1 , 2 a 2 , 2 ⋯ a 2 , n ⋮ a m , 1 a m , 2 ⋯ a m , n b 1 , 1 b 1 , 2 ⋯ b 1 , r b 1 , 2 b 2 , 2 ⋯ b 2 , r ⋮ b m , 1 b m , 2 ⋯ b m , r ] \left[\begin{array}{c|c}\begin{matrix}a_{1,1}&a_{1,2}&\cdots&a_{1,n}\\a_{1,2}&a_{2,2}&\cdots &a_{2,n}\\\vdots\\a_{m,1}&a_{m,2}&\cdots &a_{m,n}\end{matrix}&\begin{matrix}b_{1,1}&b_{1,2}&\cdots&b_{1,r}\\b_{1,2}&b_{2,2}&\cdots &b_{2,r}\\\vdots\\b_{m,1}&b_{m,2}&\cdots &b_{m,r}\end{matrix}\end{array}\right] a1,1a1,2am,1a1,2a2,2am,2a1,na2,nam,nb1,1b1,2bm,1b1,2b2,2bm,2b1,rb2,rbm,r

矩阵内初等运算

初等行运算:

  1. 交换两行.
  2. 以非零实数乘以某行.
  3. 将某行替换为它与其他行的倍数的和.
矩阵间运算

代数法则:

A ( m × n ) + B ( m × n ) = [ a 1 , 1 + b 1 , 1 a 1 , 2 + b 1 , 2 ⋯ a 1 , n + b 1 , n a 1 , 2 + b 1 , 2 a 2 , 2 + b 2 , 2 ⋯ a 2 , n + b 2 , n ⋮ a m , 1 + b m , 1 a m , 2 + b m , 2 ⋯ a m , n + b m , n ] A(m\times n)+B(m\times n)=\begin{bmatrix}a_{1,1}+b_{1,1}&a_{1,2}+b_{1,2}&\cdots&a_{1,n}+b_{1,n}\\a_{1,2}+b_{1,2}&a_{2,2}+b_{2,2}&\cdots &a_{2,n}+b_{2,n}\\\vdots\\a_{m,1}+b_{m,1}&a_{m,2}+b_{m,2}&\cdots &a_{m,n}+b_{m,n}\end{bmatrix} A(m×n)+B(m×n)=a1,1+b1,1a1,2+b1,2am,1+bm,1a1,2+b1,2a2,2+b2,2am,2+bm,2a1,n+b1,na2,n+b2,nam,n+bm,n

A ( m × n ) B ( n × r ) = C ( m × r ) , c i , j = a i → b j A(m\times n)B(n\times r)=C(m\times r),c_{i,j}=\overrightarrow{a_i}b_j A(m×n)B(n×r)=C(m×r),ci,j=ai bj

A + B = B + A A+B=B+A A+B=B+A

( A B ) C = A ( B C ) (AB)C=A(BC) (AB)C=A(BC)

λ A = [ λ a 1 , 1 λ a 1 , 2 ⋯ λ a 1 , n λ a 1 , 2 λ a 2 , 2 ⋯ λ a 2 , n ⋮ λ a m , 1 λ a m , 2 ⋯ λ a m , n ] \lambda A=\begin{bmatrix}\lambda a_{1,1}&\lambda a_{1,2}&\cdots&\lambda a_{1,n}\\\lambda a_{1,2}&\lambda a_{2,2}&\cdots &\lambda a_{2,n}\\\vdots\\\lambda a_{m,1}&\lambda a_{m,2}&\cdots &\lambda a_{m,n}\end{bmatrix} λA=λa1,1λa1,2λam,1λa1,2λa2,2λam,2λa1,nλa2,nλam,n

注意: 矩阵乘法不满足交换律,即 A × B ≠ B × A A\times B\ne B\times A A×B=B×A

矩阵的转置

A ( m × n ) A(m\times n) A(m×n), 则定义 A T ( n × m ) A^T(n\times m) AT(n×m)

A T ( n × m ) = [ a 1 , 1 a 1 , 2 ⋯ a 1 , m a 1 , 2 a 2 , 2 ⋯ a 2 , m ⋮ a n , 1 a n , 2 ⋯ a n , m ] A^T(n\times m)=\begin{bmatrix}a_{1,1}&a_{1,2}&\cdots&a_{1,m}\\a_{1,2}&a_{2,2}&\cdots &a_{2,m}\\\vdots\\a_{n,1}&a_{n,2}&\cdots &a_{n,m}\end{bmatrix} AT(n×m)=a1,1a1,2an,1a1,2a2,2an,2a1,ma2,man,m

( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT

单位矩阵

定义 I I I n × n n\times n n×n 单位矩阵,即仅在主对角线位置的值为 1 1 1 ,其余位置为 0 0 0 的矩阵

I = [ 1 0 ⋯ 0 0 1 ⋯ 0 ⋮ 0 0 ⋯ 1 ] I=\begin{bmatrix}1&0&\cdots&0\\0&1&\cdots &0\\\vdots\\0&0&\cdots &1\end{bmatrix} I=100010001

矩阵的逆

定义唯一的 A − 1 A^{-1} A1 A ( A − 1 ) = I A(A^{-1})=I A(A1)=I

如果一个矩阵 A A A 可逆,它一定可以转化为 I I I,如果不能,则称之为奇异的矩阵

初等矩阵

三类初等矩阵均由 I I I 进行一次初等行运算得来。

初等矩阵的逆与自身为同一类初等矩阵。

第一类:交换 I I I 两行得来,例子:第 2 2 2 行与第 3 3 3 行。 E A EA EA 矩阵即交换 A A A i i i j j j 行, A E AE AE 交换 i i i j j j 列。

E 1 = [ 1 0 0 0 0 1 0 1 0 ] , E 1 − 1 = [ 1 0 0 0 0 1 0 1 0 ] , E A = [ a 1 , 1 a 1 , 2 a 1 , 3 a 3 , 1 a 3 , 2 a 3 , 3 a 2 , 1 a 2 , 2 a 2 , 3 ] E_1=\begin{bmatrix}1&0&0\\0&0&1\\0&1&0\end{bmatrix},{E_1}^{-1}=\begin{bmatrix}1&0&0\\0&0&1\\0&1&0\end{bmatrix},EA=\begin{bmatrix}a_{1,1}&a_{1,2}&a_{1,3}\\a_{3,1}&a_{3,2}&a_{3,3}\\a_{2,1}&a_{2,2}&a_{2,3}\end{bmatrix} E1=100001010,E11=100001010,EA=a1,1a3,1a2,1a1,2a3,2a2,2a1,3a3,3a2,3

第二类:某一行乘上一个非零系数得到, E A EA EA 扩大行倍数, A E AE AE 扩大列倍数。

E 2 = [ 1 0 0 0 3 0 0 0 1 ] , E 2 − 1 = [ 1 0 0 0 1 3 0 0 0 1 ] , E A = [ a 1 , 1 a 1 , 2 a 1 , 3 3 a 2 , 1 3 a 2 , 2 3 a 2 , 3 a 3 , 1 a 3 , 2 a 3 , 3 ] E_2=\begin{bmatrix}1&0&0\\0&3&0\\0&0&1\end{bmatrix},{E_2}^{-1}=\begin{bmatrix}1&0&0\\0&\frac{1}{3}&0\\0&0&1\end{bmatrix},EA=\begin{bmatrix}a_{1,1}&a_{1,2}&a_{1,3}\\3a_{2,1}&3a_{2,2}&3a_{2,3}\\a_{3,1}&a_{3,2}&a_{3,3}\end{bmatrix} E2=100030001,E21=1000310001,EA=a1,13a2,1a3,1a1,23a2,2a3,2a1,33a2,3a3,3

第三类: I I I 某一行的倍数加到了另一行得到, E A EA EA 行加, A E AE AE 列加

E 3 = [ 1 0 0 0 1 3 0 0 1 ] , E 3 − 1 = [ 1 0 0 0 1 − 3 0 0 1 ] , E A = [ a 1 , 1 a 1 , 2 a 1 , 3 a 2 , 1 + 3 a 3 , 1 a 2 , 2 + 3 a 3 , 2 a 2 , 3 + 3 a 3 , 3 a 3 , 1 a 3 , 2 a 3 , 3 ] E_3=\begin{bmatrix}1&0&0\\0&1&3\\0&0&1\end{bmatrix},{E_3}^{-1}=\begin{bmatrix}1&0&0\\0&1&-3\\0&0&1\end{bmatrix},EA=\begin{bmatrix}a_{1,1}&a_{1,2}&a_{1,3}\\a_{2,1}+3a_{3,1}&a_{2,2}+3a_{3,2}&a_{2,3}+3a_{3,3}\\a_{3,1}&a_{3,2}&a_{3,3}\end{bmatrix} E3=100010031,E31=100010031,EA=a1,1a2,1+3a3,1a3,1a1,2a2,2+3a3,2a3,2a1,3a2,3+3a3,3a3,3

其中 E A EA EA 中的 E E E a 2 , 3 a_{2,3} a2,3 表示为把 A A A 的第三行扩大到 a 2 , 3 a_{2,3} a2,3 倍后,对应加到 E A EA EA 的第二行。

A E AE AE 则表示把 A A A 的第二列扩大到 a 2 , 3 a_{2,3} a2,3 倍后,对应加到 A E AE AE 的第三列。


若存在有限初等矩阵序列 E 1 , E 2 , ⋯   , E k E_1,E_2,\cdots,E_k E1,E2,,Ek ,使得

B = E 1 E 2 ⋯ E k A B=E_1E_2\cdots E_kA B=E1E2EkA

则说明 A A A B B B 可以互相转换( B B B 转化为 A A A 只需要把序列元素取逆),称之为 A A A B B B 是行等价的。

这个性质可以传递闭包,即若 B B B C C C 行等价,则 A A A C C C 行等价。


A A A 为非奇异矩阵,即 A A A 可逆,那么一定存在 E 1 , E 2 , ⋯   , E k E_1,E_2,\cdots,E_k E1,E2,,Ek ,使得

( A − 1 ) A = ( E 1 E 2 ⋯ E k ) A = I (A^{-1})A=(E_1E_2\cdots E_k)A=I (A1)A=(E1E2Ek)A=I

因此, A A A I I I 行等价。

同样地通过 I I I 得到 A − 1 A^{-1} A1 ,仅需要在等式两边乘上 A − 1 A^{-1} A1

( E 1 E 2 ⋯ E k ) I = A − 1 (E_1E_2\cdots E_k)I=A^{-1} (E1E2Ek)I=A1

同时也可以说明 A x = b Ax=b Ax=b 存在唯一解 A − 1 b A^{-1}b A1b

A − 1 A^{-1} A1求法 : 可以把增广矩阵 ( A ∣ I ) × E 1 E 2 ⋯ E k = ( I ∣ (A|I)\times E_1E_2\cdots E_k=(I| (AI)×E1E2Ek=(I A − 1 A^{-1} A1)

实际上就是一个消元的过程。

对角矩阵和三角形矩阵

三角形矩阵分为

下三角矩阵

[ a 1 , 1 0 0 a 2 , 1 a 2 , 2 0 a 2 , 1 a 3 , 2 a 3 , 3 ] \begin{bmatrix}a_{1,1}&0&0\\a_{2,1}&a_{2,2}&0\\a_{2,1}&a_{3,2}&a_{3,3}\end{bmatrix} a1,1a2,1a2,10a2,2a3,200a3,3

上三角矩阵

[ a 1 , 1 a 1 , 2 a 1 , 3 0 a 2 , 2 a 2 , 3 0 0 a 2 , 3 ] \begin{bmatrix}a_{1,1}&a_{1,2}&a_{1,3}\\0&a_{2,2}&a_{2,3}\\0&0&a_{2,3}\end{bmatrix} a1,100a1,2a2,20a1,3a2,3a2,3

对角矩阵

[ a 1 , 1 0 0 0 a 2 , 2 0 0 0 a 3 , 3 ] \begin{bmatrix}a_{1,1}&0&0\\0&a_{2,2}&0\\0&0&a_{3,3}\end{bmatrix} a1,1000a2,2000a3,3

其中 a i , j a_{i,j} ai,j 可以为 0 0 0

一个普通矩阵 A A A一定可以分成一个单位下三角矩阵 L L L 和严格上三角形矩阵 U U U,即 A = L U A=LU A=LU 。(实际上是高斯消元成上三角矩阵 U U U,消元过程相当于一个下三角矩阵 L L L) 此为 L U LU LU分解.

U = E 1 E 2 ⋯ E k A U=E_1E_2\cdots E_k A U=E1E2EkA

L = ( E 1 E 2 ⋯ E k ) − 1 = E k − 1 E k − 1 − 1 ⋯ E 1 − 1 L=(E_1E_2\cdots E_k)^{-1}=E_{k}^{-1}E_{k-1}^{-1}\cdots {E_1}^{-1} L=(E1E2Ek)1=Ek1Ek11E11

向量

向量可以看作 n ∗ 1 n*1 n1的矩阵,一般向量当作列向量.

长度为 n n n,每一项都为实数的向量 x ∈ R n , R n x\in R^n,R^n xRn,Rn n n n维欧几里得空间

两个列向量 x , y , x T y x,y,x^Ty x,y,xTy的结果为一实数,称为内积.

x y T = ∣ x 1 y 1 x 1 y 2 x 1 y 3 . . . x 1 y n x 2 y 1 x 2 y 2 x 2 y 3 . . . x 2 y n ⋮ ⋱ x n y 1 x n y 2 x n y 3 . . . x n y n ∣ xy^T=\begin{vmatrix} &x_1y_1 &x_1y_2&x_1y_3&...&x_1y_n\\ &x_2y_1&x_2y_2&x_2y_3&...&x_2y_n\\&\vdots & \ddots \\ &x_ny_1&x_ny_2&x_ny_3&...&x_ny_n\end{vmatrix} xyT=x1y1x2y1xny1x1y2x2y2xny2x1y3x2y3xny3.........x1ynx2ynxnyn,结果为 n ∗ n n*n nn的矩阵,称为外积.

容易看出,每一行都是 y T y^T yT的倍数,每一列都是 x x x的倍数.

我们可以把向量拓展为矩阵,设 X , Y X,Y X,Y分别为 m ∗ n , k ∗ n m*n,k*n mn,kn的矩阵.

X Y T = [ x 1   x 2   . . .   x n ] [ y 1 T y 2 T ⋮ y n T ] = ∑ i = 1 n x i y i T XY^T=[x_1 ~x_2~...~x_n]\begin{bmatrix} y_1^T\\y_2^T \\ \vdots \\ y_n^T\end{bmatrix}=\sum_{i=1}^n x_iy_i^T XYT=[x1 x2 ... xn]y1Ty2TynT=i=1nxiyiT,称为外积展开.

行列式

行列式是一个标量,简记为

det ⁡ ( A ) \det(A) det(A)

∣ a 1 , 1 a 1 , 2 ⋯ a 1 , n a 2 , 1 a 2 , 2 ⋯ a 2 , n ⋮ a m , 1 a m , 2 ⋯ a m , n ∣ \begin{vmatrix}a_{1,1}&a_{1,2}&\cdots&a_{1,n}\\a_{2,1}&a_{2,2}&\cdots&a_{2,n}\\\vdots\\a_{m,1}&a_{m,2}&\cdots&a_{m,n}\end{vmatrix} a1,1a2,1am,1a1,2a2,2am,2a1,na2,nam,n

可以用来表示 A A A 是否可逆,可逆当且仅当 det ⁡ ( A ) \det(A) det(A) 0 0 0

因此对于 1 × 1 1\times1 1×1 的矩阵 , det ⁡ ( A ) = a 1 , 1 \det(A)=a_{1,1} det(A)=a1,1

对于 2 × 2 2\times 2 2×2 的矩阵,取决于能否使得 A A A 转化为 I I I,显然有

[ a 1 , 1 a 1 , 2 0 a 1 , 1 a 2 , 2 − a 1 , 2 a 2 , 1 ] \begin{bmatrix}a_{1,1}&a_{1,2}\\0&a_{1,1}a_{2,2}-a_{1,2}a_{2,1}\end{bmatrix} [a1,10a1,2a1,1a2,2a1,2a2,1]

充要条件为: a 1 , 1 a 2 , 2 − a 1 , 2 a 2 , 1 ≠ 0 a_{1,1}a_{2,2}-a_{1,2}a_{2,1}\ne 0 a1,1a2,2a1,2a2,1=0

如果 a 1 , 1 = 0 a_{1,1}=0 a1,1=0 ,可以交换两行,得到 a 1 , 2 a 2 , 1 ≠ 0 a_{1,2}a_{2,1}\ne 0 a1,2a2,1=0

因此 det ⁡ ( A ) = a 1 , 1 a 2 , 2 − a 1 , 2 a 2 , 1 \det(A)=a_{1,1}a_{2,2}-a_{1,2}a_{2,1} det(A)=a1,1a2,2a1,2a2,1

3 × 3 3\times 3 3×3 的矩阵请自行推导。

观察 2 × 2 2\times 2 2×2 的矩阵,可以发现相当于

a 1 , 1 ∣ a 2 , 2 ∣ − a 1 , 2 ∣ a 2 , 1 ∣ a_{1,1}\begin{vmatrix}a_{2,2}\end{vmatrix}-a_{1,2}|a_{2,1}| a1,1a2,2a1,2a2,1

当然是

a 2 , 2 ∣ a 1 , 1 ∣ − a 2 , 1 ∣ a 1 , 2 ∣ , a 1 , 1 ∣ a 2 , 2 ∣ − a 1 , 2 ∣ a 2 , 1 ∣ a_{2,2}\begin{vmatrix}a_{1,1}\end{vmatrix}-a_{2,1}\begin{vmatrix}a_{1,2}\end{vmatrix},a_{1,1}\begin{vmatrix}a_{2,2}\end{vmatrix}-a_{1,2}\begin{vmatrix}a_{2,1}\end{vmatrix} a2,2a1,1a2,1a1,2,a1,1a2,2a1,2a2,1

不妨定义矩阵 M i , j M_{i,j} Mi,j 表示 A A A 删除 i i i j j j 列后的矩阵

那么 det ⁡ ( A ) = a 1 , 1 det ⁡ ( M 1 , 1 ) − a 1 , 2 det ⁡ ( M 1 , 2 ) = a 2 , 2 det ⁡ ( M 1 , 1 ) − a 2 , 1 det ⁡ ( M 1 , 2 ) \det(A)=a_{1,1}\det(M_{1,1})-a_{1,2}\det(M_{1,2})=a_{2,2}\det(M_{1,1})-a_{2,1}\det(M_{1,2}) det(A)=a1,1det(M1,1)a1,2det(M1,2)=a2,2det(M1,1)a2,1det(M1,2)

定义 a i , j a_{i,j} ai,j子式 det ⁡ ( M i , j ) \det(M_{i,j}) det(Mi,j)余子式 A i , j = ( − 1 ) i + j det ⁡ ( M i , j ) A_{i,j}=(-1)^{i+j}\det(M_{i,j}) Ai,j=(1)i+jdet(Mi,j)

n × n n\times n n×n 的矩阵 A A A的行列式的递归定义为:

det ⁡ ( A ) = { a 1 , 1 ( n = 1 ) a 1 , 1 A 1 , 1 + a 1 , 2 A 1 , 2 + ⋯ + a 1 , n A 1 , n n > 1 \det(A)=\begin{cases}a_{1,1}&(n=1)\\a_{1,1}A_{1,1}+a_{1,2}A_{1,2}+\cdots+a_{1,n}A_{1,n}&n>1\end{cases} det(A)={a1,1a1,1A1,1+a1,2A1,2++a1,nA1,n(n=1)n>1

上面展开成 n n n项称为按第一行余子式展开.

实际上, det ⁡ ( A ) \det(A) det(A)可以按任意行或列进行余子式展开.

例如, det ⁡ ( A ) = a 1 , j A 1 , j + a 2 , j A 2 , j + ⋯ + a n , j A n , j \det(A)=a_{1,j}A_{1,j}+a_{2,j}A_{2,j}+\cdots+a_{n,j}A_{n,j} det(A)=a1,jA1,j+a2,jA2,j++an,jAn,j为按第 j j j列余子式展开.

简单性质:

  • det ⁡ ( A T ) = det ⁡ ( A ) \det(A^T)=\det(A) det(AT)=det(A)

  • A A A 有 一行或一列元素全为 0 0 0 ,则 det ⁡ ( A ) = 0 \det(A)=0 det(A)=0

  • A A A 存在两行或两列相等,则 det ⁡ ( A ) = 0 \det(A)=0 det(A)=0

  • det ⁡ ( A B ) = det ⁡ ( A ) ∗ det ⁡ ( B ) \det(AB)=\det(A)*\det(B) det(AB)=det(A)det(B).


det ⁡ ( A ) \det(A) det(A)和初等行变换:

A A A 为一 n × n n\times n n×n 矩阵,若 A j , k A_{j,k} Aj,k 表示 a j , k a_{j,k} aj,k 的余子式,其中 k = 1 , ⋯   , n k=1,\cdots ,n k=1,,n,则

a i , 1 A j , 1 + a i , 2 A j , 2 + ⋯ + a i , n A j , n = { det ⁡ ( A ) ( i = j ) 0 ( i ≠ j ) a_{i,1}A_{j,1}+a_{i,2}A_{j,2}+\cdots+a_{i,n}A_{j,n}=\begin{cases}\det(A)&(i=j)\\0&(i\ne j)\end{cases} ai,1Aj,1+ai,2Aj,2++ai,nAj,n={det(A)0(i=j)(i=j)

证明仅需要建立 A ∗ A^* A 使得 A A A 矩阵的 j j j 行 等于 i i i 行即可得证。

考虑经过一次初等行运算的 A A A

第一类:

det ⁡ ( E A ) = − det ⁡ ( A ) \det(EA)=-\det(A) det(EA)=det(A)

特别地,对于 det ⁡ ( E I ) = − d e t ( I ) = d e t ( E ) = − 1 \det(EI)=-det(I)=det(E)=-1 det(EI)=det(I)=det(E)=1

第二类:

det ⁡ ( E A ) = c det ⁡ ( A ) \det(EA)=c\det(A) det(EA)=cdet(A)

c c c 为扩大的倍数。

证明显然,只需要沿着扩大倍数那一行或一列展开即可。

第三类:

det ⁡ ( E A ) = det ⁡ ( A ) \det(EA)=\det(A) det(EA)=det(A)

也是仅需要沿着得到加数那行展开即可。

因此可以得到:

det ⁡ ( E A ) = det ⁡ ( E ) det ⁡ ( A ) \det(EA)=\det(E)\det(A) det(EA)=det(E)det(A)

其中

det ⁡ ( A ) = { − 1 ( 1 ) c ≠ 0 ( 2 ) 1 ( 3 ) \det(A)=\begin{cases}-1&(1)\\c\ne 0&(2)\\1&(3)\end{cases} det(A)=1c=01(1)(2)(3)

也有

det ⁡ ( A E ) = d e l ( ( A E ) T ) = det ⁡ ( E T A T ) = det ⁡ ( E T ) det ⁡ ( A T ) \det(AE)=del((AE)^T)=\det(E^TA^T)=\det(E^T)\det(A^T) det(AE)=del((AE)T)=det(ETAT)=det(ET)det(AT)

因此对于初等行运算有

  1. 交换矩阵的两行(或列)改变行列式的符号
  2. 矩阵的某行或列乘以一个标量的作用是将行列式乘以这个标量
  3. 将某行(或列)的倍数加到其他行(或列)上不改变行列式的值

3 3 3 出发,我们可以得到一个推论: 如果一行(列)是另一行(列)的倍数,则矩阵的行列式为零。

伴随矩阵

定义伴随矩阵

adj  A = [ A 1 , 1 A 1 , 2 ⋯ A 1 , n A 1 , 2 A 2 , 2 ⋯ A 2 , n ⋮ A n , 1 A n , 2 ⋯ A n , n ] \text{adj }A=\begin{bmatrix}A_{1,1}&A_{1,2}&\cdots&A_{1,n}\\A_{1,2}&A_{2,2}&\cdots &A_{2,n}\\\vdots\\A_{n,1}&A_{n,2}&\cdots &A_{n,n}\end{bmatrix} adj A=A1,1A1,2An,1A1,2A2,2An,2A1,nA2,nAn,n

adj A \text{adj}A adjA可以看作余子式的转置.

容易看出:

a i , 1 A j , 1 + a i , 2 A j , 2 + ⋯ + a i , n A j , n = { det ⁡ ( A ) ( i = j ) 0 ( i ≠ j ) a_{i,1}A_{j,1}+a_{i,2}A_{j,2}+\cdots+a_{i,n}A_{j,n}=\begin{cases}\det(A)&(i=j)\\0&(i\ne j)\end{cases} ai,1Aj,1+ai,2Aj,2++ai,nAj,n={det(A)0(i=j)(i=j)

A ( adj  A ) = det ⁡ ( A ) I A(\text{adj }A)=\det(A)I A(adj A)=det(A)I

A A A 可逆,则

A ( 1 det ⁡ ( A ) adj  A ) = I A(\frac{1}{\det(A)}\text{adj }A)=I A(det(A)1adj A)=I

因此

A − 1 = 1 det ⁡ ( A ) adj  A ( det ⁡ ( A ) ≠ 0 ) A^{-1}=\frac{1}{\det(A)}\text{adj }A(\det(A)\ne 0) A1=det(A)1adj A(det(A)=0)

特征值

我们设想一下这个问题:

给定 A A A n × n n\times n n×n 的矩阵, x x x n × 1 n\times 1 n×1 的矩阵

若存在标量 λ \lambda λ,使得方程 A x = λ x Ax=\lambda x Ax=λx,则称 λ \lambda λ 为特征值,称向量 x x x 为属于 λ \lambda λ 的特征向量。

方程 A x = λ x Ax=\lambda x Ax=λx 可以改写为

( A − λ I ) x = 0                ( 1 ) (A-\lambda I)x=0~~~~~~~~~~~~~~(1) (AλI)x=0              (1)

因此 λ \lambda λ A A A 的特征值的充要条件是 ( 1 ) (1) (1) 有一非平凡解, ( 1 ) (1) (1) 的解集为 N ( A − λ I ) N(A-\lambda I) N(AλI),它是 C n C^n Cn 的一个子空间,

λ \lambda λ A A A 的一个特征值,则 N ( A − λ I ) ≠ { 0 } N(A-\lambda I)\ne \{0\} N(AλI)={0} ,且 N ( A − λ ) N(A-\lambda) N(Aλ) 中任意非零向量均为 λ \lambda λ 的特征向量,这个子空间称为 λ \lambda λ 的特征空间。

实际上,上面的条件可以等价于方程 ( 1 ) (1) (1) 有非平凡解,其充要条件就是 ( A − λ I ) x = 0 (A-\lambda I)x=0 (AλI)x=0 为奇异的,等价于

det ⁡ ( A − λ I ) = 0 \det(A-\lambda I)=0 det(AλI)=0

如果把 det ⁡ ( A − λ I ) \det(A-\lambda I) det(AλI) 展开,可以得到一个变量为 λ \lambda λ n n n 次多项式

p ( λ ) = det ⁡ ( A − λ I ) p(\lambda)=\det(A-\lambda I) p(λ)=det(AλI)

这个多项式被称为 特征多项式,且方程 det ⁡ ( A − λ I ) = 0 \det(A-\lambda I)=0 det(AλI)=0 被成为矩阵 A A A特征方程,多项式的根即为 A A A 的特征值。

如果对重根也计数,则特征多项式将恰有 n n n 个根,因此 A A A 将有 n n n 个特征值,其中某些可能会重复,其中可能有些是复数。

请记住上述结论,这涉及到了重要性质的推导

特征值的乘积与和

由于

p ( λ ) = det ⁡ ( A − λ I ) = ∣ a 1 , 1 − λ a 1 , 2 ⋯ a 1 , n a 1 , 2 a 2 , 2 − λ ⋯ a 2 , n ⋮ a n , 1 a n , 2 ⋯ a n , n − λ ∣ p(\lambda)=\det(A-\lambda I)=\begin{vmatrix}a_{1,1}-\lambda&a_{1,2}&\cdots&a_{1,n}\\a_{1,2}&a_{2,2}-\lambda&\cdots &a_{2,n}\\\vdots\\a_{n,1}&a_{n,2}&\cdots &a_{n,n}-\lambda\end{vmatrix} p(λ)=det(AλI)=a1,1λa1,2an,1a1,2a2,2λan,2a1,na2,nan,nλ

按照第一列进行展开,我们得到

det ⁡ ( A − λ I ) = ( a 1 , 1 − λ ) det ⁡ ( M 1 , 1 ) + ∑ i = 2 n ( − 1 ) i + 1 det ⁡ ( M i , 1 ) \det(A-\lambda I)=(a_{1,1}-\lambda)\det(M_{1,1})+\sum\limits_{i=2}^n(-1)^{i+1}\det(M_{i,1}) det(AλI)=(a1,1λ)det(M1,1)+i=2n(1)i+1det(Mi,1)

det ⁡ ( M 1 , 1 ) \det(M_{1,1}) det(M1,1) 以相同的方法展开,我们得到

∑ i = 1 n ( a i , i − λ ) \sum_{i=1}^n(a_{i,i}-\lambda) i=1n(ai,iλ)

这是 det ⁡ ( A − λ ) \det(A-\lambda) det(Aλ) 的展开式中唯一包含多于 n − 2 n-2 n2 个对角元素的项。

p ( λ ) p(\lambda) p(λ) 展开后,可以得到 λ n \lambda^n λn 的系数为 ( − 1 ) n (-1)^n (1)n,由此可以得到 p ( λ ) p(\lambda) p(λ) 的首系数为 ( − 1 ) n (-1)^n (1)n,于是若建立关于 A A A 的特征值 λ 1 , λ 2 , ⋯   , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn多根方程,则

p ( λ ) = ( − 1 ) n ( λ − λ 1 ) ( λ − λ 2 ) ⋯ ( λ − λ n ) = ( λ 1 − λ ) ( λ 2 − λ ) ⋯ ( λ n − λ ) \begin{aligned}p(\lambda)&=(-1)^n(\lambda-\lambda_1)(\lambda-\lambda_2)\cdots(\lambda-\lambda_n)\\&=(\lambda_1-\lambda)(\lambda_2-\lambda)\cdots(\lambda_n-\lambda)\end{aligned} p(λ)=(1)n(λλ1)(λλ2)(λλn)=(λ1λ)(λ2λ)(λnλ)

很容易得到特征值的乘积

p ( 0 ) = λ 1 λ 2 ⋯ λ n = det ⁡ ( A ) p(0)=\lambda_1\lambda_2\cdots\lambda_n=\det(A) p(0)=λ1λ2λn=det(A)

还可以注意到 p ( λ ) p(\lambda) p(λ) ( − λ ) n − 1 (-\lambda)^{n-1} (λ)n1 的系数为 ∑ i = 1 n a i , i \sum\limits_{i=1}^n a_{i,i} i=1nai,i,同时由于多根方程中次项系数为 ∑ i = 1 n λ i \sum\limits_{i=1}^n\lambda_i i=1nλi,由此

∑ i = 1 λ i = ∑ i = 1 n a i , i \sum\limits_{i=1}\lambda_i=\sum\limits_{i=1}^na_{i,i} i=1λi=i=1nai,i

A A A 的对角线元素的和为 A A A 的迹,并记为 tr ( A ) \text{tr}(A) tr(A).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值