利用对极几何求解相机的运动

PS::大家好,接下来我将推导下本质矩阵的由来,什么叫做对极约束,得到匹配点怎么来计算本质矩阵?什么是八点法?得到本质矩阵之后如何得到相机的外参?

1.归一化图像坐标

  • 这里相机坐标系为,图像和坐标为O,这里假设焦距为1;图像坐标中心早光轴上。

  • 空间中点P在摄像机坐标系下的三维坐标:

  • 利用三角近似关系,P点的图像坐标(齐次坐标); 
    同时假设已知图像坐标,反推会发现只能得到空间坐标的两个约束关系,或者说Z可以是任意值都满足约束关系,即深度无法得到;

2.本质矩阵 essential matrix

2.1 本质矩阵的推导

  • 相机在不同时刻两帧图像同时观察到空间点P,如图:

  • P在两帧上的图像坐标满足几何约束:

  • 其中称为本质矩阵,其参数由运动的pose决定,与相机内参无关;本质矩阵在位姿估计和相机标定上很有用;

  • 约束关系的证明:


什么叫做对极约束?


如何计算本质矩阵?


如何计算相机外参?什么是SVD?


如何遇到不存在对极几何关系,如何来估计相机的运动?


什么是单应矩阵?

  • 空间点三维坐标到像素坐标(齐次形式)的转换:

  • 如果已知观察的点在某个平面上,利用平面方程的先验信息可以估计出深度

  • 已知相机中心到平面距离和法向量,可以得平面的法线方程

  • 将空间坐标替换为像素坐标:

  • 替换掉,得到由像素齐次坐标到空间坐标的转换

  • 空间点在前后两帧坐标系下的三维坐标的约束关系

  • 带入第一个公式,得到两帧之间同一空间点的像素点坐标的约束关系

  • 将上述公式简写为:

  • 矩阵称为单应矩阵,其中用来度量图像的齐次坐标,可以去掉;所以单应矩阵是pose和平面参数的矩阵;


    利用单应矩阵得到相机的外参?


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值