高等数学 · 第六章 线性代数初步

第一节 线性方程组的行列式解法

一、线性方程组

m m m n n n 元线性方程联立而成的方程组称为具有 m m m 个方程的 n n n 元线性方程。
这样的方程组一般可以表示如下:
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋯ a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n = b n \begin{cases} {a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1} \\ {a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2} \\ \cdots \\ a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n \end{cases} a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2an1x1+an2x2++annxn=bn
其中 a i j ( 1 ≤ i ≤ m , 1 ≤ j ≤ m ) a_{ij}(1 \le i \le m, 1 \le j \le m) aij(1im,1jm) b i 1 ≤ i ≤ m b_i{1 \le i \le m} bi1im 为给定常数; x 1 , x 2 , x 3 , ⋯   , x n x_1,x_2,x_3,\cdots,x_n x1,x2,x3,,xn 为未知量。常数 a i j a_{ij} aij 称为 x j x_j xj 的系数,它有两个下标, 第一个下标 i i i 表示它在方程组中的第 i i i 个方程, 第二个下标 j j j 表示它是第 j j j 个未知量的系数。
常数 b 1 , b 2 , ⋯   , b m b_1,b_2,\cdots,b_m b1,b2,,bm 称为方程组的常数项。我们称任何一个使得方程组中各个方程都成立的 n n n 元数组 ( x 1 , x 2 , ⋯   , x n ) (x_1,x_2,\cdots,x_n) (x1,x2,,xn) 为方程组的一个解。所谓求方程组的解就是求出它的所有解,即通解。
如果 b 1 , b 2 , ⋯   , b m b_1,b_2,\cdots,b_m b1,b2,,bm 全部为 0 0 0,则称方程组为 n n n 元齐次线性方程组;如果 b 1 , b 2 , ⋯   , b m b_1,b_2,\cdots,b_m b1,b2,,bm 不全为 0 0 0,则称方程组为 n n n 元非齐次线性方程组。

二、行列式解法

二元线性方程组 { a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 \begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases} {a11x1+a12x2=b1a21x1+a22x2=b2
我们引入记号 ∣ a 11 a 12 a 21 a 22 ∣ = a 11 a 22 − a 12 a 21 \left | \begin{array} {cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right | = a_{11}a_{22} - a_{12}a_{21} a11a21a12a22=a11a22a12a21 并称之为 二阶行列式。
它有两行两列,横的叫行,竖的叫列。数 a i j ( i , j = 1 , 2 ) a_{ij}(i,j = 1,2) aij(i,j=1,2) 称为行列式的元素,第一个下标 i i i 代表它所在的第 i i i 行,第二个下标 j j j 代表它所在的第 j j j 列, 即 a i j a_{ij} aij 是位于行列式第 i i i 行与第 j j j 列相交处的元素。

二阶行列式的解法——克拉默(Cramer)法则

定理 6.1 6.1 6.1 D = ∣ a 11 a 12 a 21 a 22 ∣ ≠ 0 D = \left | \begin{array} {cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right | \neq 0 D=a11a21a12a22=0 则二元线性方程组有唯一解
x 1 = D 1 D = 1 D ∣ b 1 a 12 b 2 a 22 ∣ x_1 = \cfrac{D_1}{D} = \cfrac {1}{D}\left| \begin{array} {cc} b_1 & a_{12} \\ b_2 & a_{22} \end{array} \right| x1=DD1=D1b1b2a12a22, x 2 = D 2 D = 1 D ∣ a 11 b 1 a 21 b 2 ∣ x_2 = \cfrac{D_2}{D} = \cfrac {1}{D}\left| \begin{array} {cc} a_{11} & b_1 \\ a_{21} & b_2 \end{array} \right| x2=DD2=D1a11a21b1b2
其中 D D D 称为方程组的系数行列式,
D 1 = ∣ b 1 a 12 b 2 a 22 ∣ D1 = \left| \begin{array} {cc} b_1 & a_{12} \\ b_2 & a_{22} \end{array} \right| D1=b1b2a12a22 D 2 = ∣ a 11 b 1 a 21 b 2 ∣ D_2 = \left| \begin{array} {cc} a_{11} & b_1 \\ a_{21} & b_2 \end{array} \right| D2=a11a21b1b2
就是分别将系数行列式中的第一列和第二列换成 b 1 , b 2 b_1, b_2 b1,b2 得到的两个行列式。

例题
  1. 解线性方程组 { 3 x + 4 y = 2 4 x + 5 y = 3 \begin{cases} 3x + 4y = 2 \\ 4x + 5y = 3 \end{cases} {3x+4y=24x+5y=3
    解: D = ∣ 3 4 4 5 ∣ = 3 ∗ 5 − 4 ∗ 4 = − 1 ≠ 0 D = \left | \begin{array} {cc} 3 & 4 \\ 4 & 5 \end{array} \right | = 3 * 5 - 4 * 4 = -1 \neq 0 D=3445=3544=1=0
    D 1 = ∣ 2 4 3 5 ∣ = 2 ∗ 5 − 4 ∗ 3 = − 2 D_1 = \left | \begin{array} {cc} 2 & 4 \\ 3 & 5 \end{array} \right | = 2 * 5 - 4 * 3 = -2 D1=2345=2543=2
    D 2 = ∣ 3 2 4 3 ∣ = 3 ∗ 3 − 2 ∗ 4 = 1 D_2 = \left | \begin{array} {cc} 3 & 2 \\ 4 & 3 \end{array} \right | = 3 * 3 - 2 * 4 = 1 D2=3423=3324=1
    所以,方程组有唯一解 x = D 1 D = − 2 − 1 = 2 , y = D 2 D = 1 − 1 = − 1 x = \cfrac {D_1} {D} = \cfrac {-2}{-1} = 2, y = \cfrac {D_2}{D} = \cfrac {1}{-1} = -1 x=DD1=12=2,y=DD2=11=1
三阶行列式

类似地,我们引进三阶行列式
∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 23 a 31 − a 11 a 23 a 32 − a 12 a 21 a 33 − a 13 a 22 a 31 \left | \begin{array} {ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right | = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{23}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31} a11a21a31a12a22a32a13a23a33=a11a22a33+a12a23a31+a13a23a31a11a23a32a12a21a33a13a22a31
类似地,
D = ∣ a 11 a 12 a 13 0 a 22 a 23 0 0 a 33 ∣ D = \left | \begin{array} {ccc} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{array} \right | D=a1100a12a220a13a23a33 ∣ a 11 0 0 a 21 a 22 0 a 31 a 32 a 33 ∣ \left | \begin{array} {ccc} a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{array} \right | a11a21a310a22a3200a33
以上两个行列式分别称为上三角行列式和下三角行列式,它们的值均为其对角线 上元素的乘积。

三阶行列式的解法——克拉默(Cramer)法则

定理 6.2 6.2 6.2 D = ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ ≠ 0 D = \left | \begin{array} {ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right | \neq 0 D=a11a21a31a12a22a32a13a23a33=0
则三元线性方程组 { a 11 x 1 + a 12 x 2 + a 13 x 3 = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 = b 2 a 31 x 1 + a 32 x 2 + a 33 x 3 = b 3 \begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 \end{cases} a11x1+a12x2+a13x3=b1a21x1+a22x2+a23x3=b2a31x1+a32x2+a33x3=b3 有唯一解 x 1 = D 1 D , x 2 = D 2 D , x 3 = D 3 D x_1 = \cfrac {D_1}{D}, x_2 = \cfrac {D_2}{D}, x_3 = \cfrac {D_3}{D} x1=DD1,x2=DD2,x3=DD3,
其中 D 1 = ∣ b 1 a 12 a 13 b 2 a 22 a 23 b 3 a 32 a 33 ∣ , D 2 = ∣ a 11 b 1 a 13 a 21 b 2 a 23 a 31 b 3 a 33 ∣ , D 3 = ∣ b 1 a 12 a 13 a 21 a 22 b 2 a 31 a 32 b 3 ∣ D1 = \left | \begin{array} {ccc} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{array} \right |, D_2 = \left | \begin{array} {ccc} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{array} \right |, D_3 = \left | \begin{array} {ccc} b_1 & a_{12} & a_{13} \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{array} \right | D1=b1b2b3a12a22a32a13a23a33,D2=a11a21a31b1b2b3a13a23a33,D3=b1a21a31a12a22a32a13b2b3


推论 1 1 1 若齐次线性方程组 { a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 \begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases} {a11x1+a12x2=b1a21x1+a22x2=b2 { a 11 x 1 + a 12 x 2 + a 13 x 3 = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 = b 2 a 31 x 1 + a 32 x 2 + a 33 x 3 = b 3 \begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 \end{cases} a11x1+a12x2+a13x3=b1a21x1+a22x2+a23x3=b2a31x1+a32x2+a33x3=b3 的系数行列式 D ≠ 0 D \neq 0 D=0,则它们都仅有零解。
推论 2 2 2 若齐次线性方程组 { a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 \begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases} {a11x1+a12x2=b1a21x1+a22x2=b2 { a 11 x 1 + a 12 x 2 + a 13 x 3 = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 = b 2 a 31 x 1 + a 32 x 2 + a 33 x 3 = b 3 \begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 \end{cases} a11x1+a12x2+a13x3=b1a21x1+a22x2+a23x3=b2a31x1+a32x2+a33x3=b3 有非零解,则它们的系数行列式 D = 0 D = 0 D=0.
齐次线性方程组仅有唯一解的充分必要条件是 D ≠ 0 D \neq 0 D=0

第二节 行列式的性质和计算

一、行列式的基本性质

将行列式 D = ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ D = \left | \begin{array} {ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right | D=a11a21a31a12a22a32a13a23a33 的行与相应的列互换后得到的新行列式称为行列式 D D D 的转置行列式,记为 D ′ D' D D T D^T DT,即 D ′ = ∣ a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33 ∣ D' = \left | \begin{array} {ccc} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{array} \right | D=a11a12a13a21a22a23a31a32a33
性质 1 1 1 转置行列式与原行列式有相同的值, D ′ = D D' = D D=D


性质 2 2 2 将行列式中的某一行(列)的每个元素同乘以一个数 k k k,所得的新行列式等于该行列式的 k k k 倍。即 ∣ a 11 a 12 a 13 k a 21 k a 22 k a 23 a 31 a 32 a 33 ∣ = k ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ \left | \begin{array} {ccc} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right | = k\left | \begin{array} {ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right | a11ka21a31a12ka22a32a13ka23a33=ka11a21a31a12a22a32a13a23a33


性质 3 3 3 如果行列式中某一行(列)所有元素都是两个数的和,则此行列式等于两个行列式的和,而且这两个行列式这一行(列)的元素分别为对应的两个数中的一个,其余行(列)的元素与原行列式的对应元素相同,如
∣ a 11 a 12 a 13 a 21 + a 21 ′ a 22 + a 22 ′ a 23 + a 23 ′ a 31 a 32 a 33 ∣ = ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ + ∣ a 11 a 12 a 13 a 21 ′ a 22 ′ a 23 ′ a 31 a 32 a 33 ∣ \left | \begin{array} {ccc} a_{11} & a_{12} & a_{13} \\ a_{21}+a'_{21} & a_{22}+a'_{22} & a_{23}+a'_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right | = \left | \begin{array} {ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right | + \left | \begin{array} {ccc} a_{11} & a_{12} & a_{13} \\ a'_{21} & a'_{22} & a'_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right | a11a21+a21a31a12a22+a22a32a13a23+a23a33=a11a21a31a12a22a32a13a23a33+a11a21a31a12a22a32a13a23a33


性质 4 4 4 如果行列式中两行(列)对应元素相同,则行列式等于 0 0 0
推论 3 3 3 如果行列式中一行(列)的元素全是 0 0 0,则行列式等于 0 0 0
推论 4 4 4 如果行列式中有两行(列)的元素成比例,则行列式等于 0 0 0


性质 5 5 5 将行列式中的某行(列)的所有元素乘以同一个常数 k k k,然后加到另一行(列)的对应元素上,所得新行列式的值不变,如
∣ a 11 a 12 a 13 a 21 + k a 11 a 22 + k a 12 a 23 + k a 13 a 31 a 32 a 33 ∣ = ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ \left | \begin{array} {ccc} a_{11} & a_{12} & a_{13} \\ a_{21}+ka_{11} & a_{22}+ka_{12} & a_{23}+ka_{13} \\ a_{31} & a_{32} & a_{33} \end{array} \right | = \left | \begin{array} {ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right | a11a21+ka11a31a12a22+ka12a32a13a23+ka13a33=a11a21a31a12a22a32a13a23a33


性质 6 6 6 互换行列式中的任意两行(列),行列式仅改变符号。


利用行列式的性质,可以把行列式化成上三角行列式或下三角行列式来计算,从而简化计算过程。

D 上 = ∣ a 11 a 12 a 13 0 a 22 a 23 0 0 a 33 ∣ = a 11 a 22 a 33 D_上 = \left| \begin{array} {ccc} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{array} \right| = a_{11}a_{22}a_{33} D=a1100a12a220a13a23a33=a11a22a33, D 下 = ∣ a 11 0 0 a 21 a 22 0 a 31 a 32 a 33 ∣ = a 11 a 22 a 33 D_下 = \left| \begin{array} {ccc} a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{array} \right| = a_{11}a_{22}a_{33} D=a11a21a310a22a3200a33=a11a22a33

二、行列式的按行(列)展开

D D D 是一个(二阶或三阶)行列式,去掉 a i j a_{ij} aij 所在的第 i i i 行和第 j j j 列的元素后,剩下的元素组成的(一阶或二阶)行列式称为 a i j a_{ij} aij 的余子式,记为 M i j M_{ij} Mij,而称 A i j = ( − 1 ) i + j M i j A_{ij} = (-1)^{i + j} M_{ij} Aij=(1)i+jMij a i j a_{ij} aij 的代数余子式。例如:
∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ \left | \begin{array} {ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right | a11a21a31a12a22a32a13a23a33
M 23 = ∣ a 11 a 12 a 31 a 32 ∣ M_{23} = \left | \begin{array} {cc} a_{11} & a_{12} \\ a_{31} & a_{32} \end{array} \right | M23=a11a31a12a32
A 23 = ( − 1 ) ( 2 + 3 ) M 23 = − ∣ a 11 a 12 a 31 a 32 ∣ A_{23} = (-1)^{(2 + 3)}M_{23} = - \left | \begin{array} {cc} a_{11} & a_{12} \\ a_{31} & a_{32} \end{array} \right | A23=(1)(2+3)M23=a11a31a12a32

拉普拉斯(Laplace)定理

定理 6.3 6.3 6.3 n ( n = 2 n(n = 2 n(n=2 3 ) 3) 3) 阶行列式 D D D 的值等于它的任意一行(列)的元素与其对应的代数余子式的乘积的和,即
D = ∑ j = 1 n a i j A i j ( 1 ≤ i ≤ n ) D = \sum \limits_{j = 1}^{n} a_{ij}A_{ij} (1\le i \le n) D=j=1naijAij(1in)
D = ∑ i = 1 n a i j A i j ( 1 ≤ j ≤ n ) D = \sum \limits_{i = 1}^{n} a_{ij}A_{ij} (1\le j \le n) D=i=1naijAij(1jn)

推论 5 5 5 n ( n = 2 n(n = 2 n(n=2 3 ) 3) 3) 阶行列式 D D D 的某一行(列)的元素与另一行(列)对应元素的代数余子式乘积之和等于 0 0 0,即
D = ∑ k = 1 3 a i k A i k = a i 1 A j 1 + a i 2 A j 2 + a i 3 A j 3 = 0 ( 1 ≤ i ≠ j ≤ n ) D = \sum \limits_{k = 1}^{3} a_{ik}A_{ik} = a_{i1}A_{j1} + a_{i2}A_{j2} + a_{i3}A_{j3} = 0 (1\le i \neq j \le n) D=k=13aikAik=ai1Aj1+ai2Aj2+ai3Aj3=0(1i=jn)
D = ∑ k = 1 3 a i k A i k = a 1 i A 1 j + a 2 i A 2 j + a 3 i A 3 j = 0 ( 1 ≤ i ≠ j ≤ n ) D = \sum \limits_{k = 1}^{3} a_{ik}A_{ik} = a_{1i}A_{1j} + a_{2i}A_{2j} + a_{3i}A_{3j} = 0 (1\le i \neq j \le n) D=k=13aikAik=a1iA1j+a2iA2j+a3iA3j=0(1i=jn)

第三节 矩阵与线性方程组的消元法

一、矩阵的概念

在自然科学、工程技术以及经济等领域中常常用到这种矩形数表,由此抽象出矩阵的概念。
我们称由 m × n m \times n m×n 个实数 a i j a_{ij} aij 排成的矩形数表 [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m m ] \left [ \begin{array} {cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mm}\end{array} \right ] a11a21am1a12a22am2a1na2namm 为一个 m m m n n n 列的矩阵,或 m × n m \times n m×n 阶矩阵,称 a i j a_{ij} aij 为该矩阵的元素,第一下标 i i i 表示元素所在的行,第二下标 j j j 表示元素所在的列。通常将矩阵记为 A A A ( a i j ) (a_{ij}) (aij),为了指明矩阵的行和列,有时又记为 A m × n A_{m \times n} Am×n ( a i j ) m × n (a_{ij})_{m \times n} (aij)m×n

线性方程组的初等变换
  1. 用一非零的数乘某一方程
  2. 把一个方程的倍数加到另一个方程
  3. 互换两个方程的位置

以上三种变换称为线性方程组的初等变换。
这种通过反复地对方程组进行初等变换最终求出方程组的解的方法,称为(高斯)消元法。

矩阵的初等变换

如果将方程组的系数抽象为矩阵,那么这个矩阵称之为增广矩阵,对方程组做初等变换就相当于对增广矩阵做相应的变换:

  1. 用一非零的数乘矩阵的某一行
  2. 把一个矩阵的某行的倍数加到另一个行
  3. 互换矩阵两行的位置

称对矩阵做的这三种变换为矩阵的初等行变换。

第四节 矩阵的运算

一、矩阵的加减法和矩阵与数的乘积

矩阵的加减法

将两个阶数相同的矩阵 A 和 B 的对应元素相加,所得到的新矩阵称为矩阵 A 和 B 的和,记为 A + B;而将对应元素作差得到的新矩阵称为矩阵 A 和 B 的差,记为 A - B。

由定义可知,只有在两个矩阵的行数和列数都对应相同时才能做加法和减法。
不难验证,矩阵加法具有如下性质:

  1. 交换律: A + B = B + A
  2. 结合律:(A + B)+ C = A + (B + C)
  3. 对任意矩阵 A,具有 A + O = A;其中 A,B,C 为阶数相同的矩阵, O 为阶数与 A 相同的零矩阵。
    将矩阵 A 的所有元素都变成 它 自己的相反数而得到的新矩阵称为矩阵 A 的负矩阵,记为 -A。
矩阵与数的乘积

用一个实数 k 乘以矩阵 A 中的每一个元素,所得矩阵称为数 k 与矩阵 A 的乘积,简称 数乘,记为 kA。
不难验证:

  1. ( k + l ) A = k A + l A (k + l)A = kA + lA (k+l)A=kA+lA
  2. k ( A + B ) = k A + k B k(A + B) = kA + kB k(A+B)=kA+kB
  3. k ( l A ) = ( k l ) A k(lA) = (kl)A k(lA)=(kl)A
  4. 1 A = A 1A = A 1A=A
  5. 0 A = O 0A = O 0A=O
  6. ( − 1 ) A = − A (-1)A = -A (1)A=A

二、矩阵的乘法

设 A 和 B 分别为 m × s m \times s m×s 矩阵和 s × n s \times n s×n 矩阵:
A = [ a 11 a 12 ⋯ a 1 s a 21 a 22 ⋯ a 2 s ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m s ] A = \left [ \begin{array} {cccc} a_{11} & a_{12} & \cdots & a_{1s} \\ a_{21} & a_{22} & \cdots & a_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{ms} \end{array} \right ] A=a11a21am1a12a22am2a1sa2sams, B = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a s 1 a s 2 ⋯ a s n ] B = \left [ \begin{array} {cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{s1} & a_{s2} & \cdots & a_{sn} \end{array} \right ] B=a11a21as1a12a22as2a1na2nasn
由 A 和 B 可以做一个新的 m × n m \times n m×n 矩阵 C = [ c 11 c 12 ⋯ c 1 n c 21 c 22 ⋯ c 2 n ⋮ ⋮ ⋱ ⋮ c m 1 c m 2 ⋯ c m n ] C = \left [ \begin{array} {cccc} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mn} \end{array} \right ] C=c11c21cm1c12c22cm2c1nc2ncmn,其中 c i j = ∑ k = 1 s a i k b k j c_{ij} = \sum \limits_{k = 1}^{s} a_{ik} b_{kj} cij=k=1saikbkj ( 1 ≤ i ≤ m , 1 ≤ j ≤ n ) . (1 \le i \le m, 1 \le j \le n). (1im,1jn).
称这个新矩阵 C 为矩阵 A 和矩阵 B 的乘积,记为 C = AB。


利用矩阵的乘法,线性方程组 { a 11 x 1 + a 12 x 2 + a 13 x 3 = b 1 , a 21 x 1 + a 22 x 2 + a 23 x 3 = b 2 , a 31 x 1 + a 32 x 2 + a 33 x 3 = b 3 \begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 , \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 , \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 \end{cases} a11x1+a12x2+a13x3=b1,a21x1+a22x2+a23x3=b2,a31x1+a32x2+a33x3=b3
可以写成矩阵的形式 [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] \left [ \begin{array} {ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right ] a11a21a31a12a22a32a13a23a33 [ x 1 x 2 x 3 ] = [ b 1 b 2 b 3 ] \left [ \begin{array} {c} x_{1} \\ x_{2} \\ x_{3} \end{array} \right ] = \left [ \begin{array} {c} b_{1} \\ b_{2} \\ b_{3} \end{array} \right ] x1x2x3=b1b2b3
如果令 A = [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] , A = \left [ \begin{array} {ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right ], A=a11a21a31a12a22a32a13a23a33 X = [ x 1 x 2 x 3 ] , B = [ b 1 b 2 b 3 ] X = \left [ \begin{array} {c} x_{1} \\ x_{2} \\ x_{3} \end{array} \right ], B = \left [ \begin{array} {c} b_{1} \\ b_{2} \\ b_{3} \end{array} \right ] X=x1x2x3B=b1b2b3
则线性方程组又可以简写为 A X = B AX = B AX=B


矩阵的乘积具有下列性质(假定下列出现的矩阵乘积均有意义):

  1. 结合律: ( A B ) C = A ( B C ) (AB)C = A(BC) (AB)C=A(BC)
  2. 分配律: A ( B ± C ) = A B ± A C A(B \pm C) = AB \pm AC A(B±C)=AB±AC
  3. A m × n E n × n = E m × m A m × n = A m × n A_{m \times n}E_{n \times n} = E_{m \times m}A_{m \times n} = A_{m \times n} Am×nEn×n=Em×mAm×n=Am×n (其中 E n × n , E m × m E_{n \times n}, E_{m \times m} En×n,Em×m均为单位阵)
  4. ( λ A ) B = λ ( A B ) = A ( λ B ) (\lambda A)B = \lambda(AB) = A(\lambda B) (λA)B=λ(AB)=A(λB) (其中 λ \lambda λ 为任意实数)

三、矩阵的转置

将矩阵的所有的行换成相应的列所得到的新矩阵称为矩阵 A 的转置矩阵,记为 A ′ A' A A T A^T AT
转置矩阵具有以下性质:
( A ′ ) ′ = A ′ ; ( A + B ) ′ = A ′ + B ′ ; ( A B ) ′ = B ′ A ′ ; ( k A ) ′ = k A ′ (A')' = A'; (A + B)' = A' + B'; (AB)' = B'A'; (kA)' = kA' (A)=A;(A+B)=A+B;(AB)=BA;(kA)=kA
如果 n 阶方阵 A = ( a i j ) A = (a_{ij}) A=(aij) 满足 A ′ = A A' = A A=A,即 a i j = a j i ( 1 ≤ i , j ≤ n ) a_{ij} = a_{ji} (1 \le i,j \le n) aij=aji(1i,jn),则称之为对称矩阵;如果 A ′ = − A A' = -A A=A,即 a i j = − a j i ( 1 ≤ i , j ≤ n ) a_{ij} = -a_{ji} (1 \le i,j \le n) aij=aji(1i,jn),则称之为反对称矩阵。

四、方阵的行列式性质

定理 6.4 6.4 6.4 设 A,B 均为三(或二)阶方阵,则 ∣ A B ∣ = ∣ A ∣ ∣ B ∣ , ∣ A ′ ∣ = ∣ A ∣ |AB| = |A||B|, |A'| = |A| AB=AB,A=A

第五节 可逆矩阵与逆矩阵简介

设 A 是一个 n 阶方阵。
若存在一个 n 阶方阵 B,使得 AB = BA = E,则称 A 是可逆矩阵,并称 B 为 A 的逆矩阵。
由定义可知,可逆矩阵一定是方阵,并且它的逆矩阵亦为同阶方阵。如果 B 是 A 的逆矩阵,那么 B 也是可逆矩阵,并且 A 是 B 的逆矩阵。 如果 A 是可逆矩阵,则其 逆矩阵 是唯一的,并记为 A − 1 A^{-1} A1。事实上,如果 B 和 C 均为 A 的逆矩阵,则 AB = BA = E,AC = CA = E。
因而 B = BE = B(AC) = (BA)C = EC = C.
此外,如果 A 是可逆的,则 ∣ A ∣ ≠ 0 |A| \neq 0 A=0。事实上,因为 A 可逆,所以存在矩阵 B,使得 AB = BA = E。
从而由方阵的行列式性质可知, ∣ A ∣ ∣ B ∣ = 1 |A||B| = 1 AB=1,因此, ∣ A ∣ ≠ 0 |A| \neq 0 A=0

例题
A = [ a b c d ] A = \left [ \begin{array} {cc} a & b \\ c & d \end{array} \right ] A=[acbd],且 ∣ A ∣ = a d − b c ≠ 0 |A| = ad - bc \neq 0 A=adbc=0。验证 B = 1 ∣ A ∣ [ d − b − c a ] B = \cfrac{1}{|A|} \left [ \begin{array} {cc} d & -b \\ -c & a \end{array} \right ] B=A1[dcba] A A A 的逆矩阵。
解:
∵ A B = [ a b c d ] [ 1 ∣ A ∣ [ d − b − c a ] ] = 1 ∣ A ∣ [ a b c d ] [ d − b − c a ] = 1 ∣ A ∣ [ a d − b c 0 0 a d − b c ] = [ 1 0 0 1 ] = E \because AB = \left [ \begin{array} {cc} a & b \\ c & d \end{array} \right ] \left [ \cfrac{1}{|A|} \left [ \begin{array} {cc} d & -b \\ -c & a \end{array} \right ] \right ] = \cfrac{1}{|A|} \left [ \begin{array} {cc} a & b \\ c & d \end{array} \right ] \left [ \begin{array} {cc} d & -b \\ -c & a \end{array} \right ] = \cfrac{1}{|A|} \left [ \begin{array} {cc} ad - bc & 0 \\ 0 & ad - bc \end{array} \right ] = \left [ \begin{array} {cc} 1 & 0 \\ 0 & 1 \end{array} \right ] = E AB=[acbd][A1[dcba]]=A1[acbd][dcba]=A1[adbc00adbc]=[1001]=E
并且同理可证 B A = E BA = E BA=E
故由定义可知, B = 1 ∣ A ∣ [ d − b − c a ] B = \cfrac{1}{|A|} \left [ \begin{array} {cc} d & -b \\ -c & a \end{array} \right ] B=A1[dcba] A A A 的逆矩阵。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值