代码:
%清空环境变量
clc
clear
%下载数据
load data1.mat input output
%随机选择1900组训练数据和100组预测数据
k=rand(1,2000);
[m,n]=sort(k);
%训练样本
input_train=input(n(1:1900),:)';
output_train=output(n(1:1900),:)';
%测试样本
input_test=input(n(1901:2000),:)';
output_test=output(n(1901:2000),:)';
%测试样本权重
[mm,nn]=size(input_train);
D(1,:)=ones(1,nn)/nn;
K=10;%弱分类器数量
erroryc=zeros(1,1900);
test_simu=zeros(1,100);
error1=zeros(1,100);
Error=zeros(1,100);
at=zeros(1,100);
for i=1:K
%训练样本归一化
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);
%弱预测器训练
net=newff(inputn,outputn,6);
net.trainParam.epochs=20;
net.trainParam.lr=0.1;
net=train(net,inputn,outputn);
%训练数据预测
an1=sim(net,inputn);
BPoutput=mapminmax('reverse',an1,outputps);
%预测误差
erroryc(i,:)=output_train-BPoutput;
%测试数据预测
inputn1=mapminmax('apply',input_test,inputps);
an2=sim(net,inputn1);
test_simu(i,:)=mapminmax('reverse',an2,outputps);
Error(i)=0;
for j=1;nn;
if abs(erroryc(i,j))>0.1
Error(i)=Error(i)+D(i,j);
D(i+1,j)=D(i,j)*1.1;
else
D(i+1,j)=D(i,j);
end
end
at(i)=0.5/exp(abs(Error(i)));
D(i+1,:)=D(i+1,:)/sum(D(i+1,:));
end
at=at/sum(at);
output=at.*test_simu;
error=output_test-output;
for i=1:10
error1(i,:)=test_simu(i,:)-output;
end
plot(abs(error),'-*')
hold on
plot(mean(abs(error1)),'or')
title('强预测器预测误差绝对值','fontsize',12)
xlabel('预测样本','fontsize',12)
ylabel('误差绝对值','fontsize',12)
legend('强预测其预测','弱预测器预测')
问题
有没有好心人救救我的毕设啊!!!