一、环境选择
Window10: 目前测试用
Linux: (注意是否安装 GPU版本)
(Linux后续更新,以下都是 Window下部署步骤)
二、配置选择
部署RAGFlow内存 大于 32g最好,小了不建议。这里我准备了两台电脑,一台装 ollama ,一台装 RAGFlow。测试用,这次配置不关键,后续实际部署再来更新。(最好 科学上网一直挂着)
三、Deepseek R1 和 RAGFlow 模型大致流程
当然,RAGFlow肯定不止这一点功能
四、Ollama下载与安装
1、下载网址
2、配 环境变量
记得重启一下最好。目的是为了 更改模型下载位置以及可以局域网内可以访问,记得检查 11434 端口是否放开。
3、双击安装
4、验证安装
cmd 运行 命令
Ollama --version
5、再次进入ollama 官网
点击 model
找到需要的deepseek r1
点击deepseek r1
打开cmd窗口,运行这个命令,就可以安装 对应模型,这里我选择 1.5版本,纯测试。
6、简单测试r1(我这是已经下载完毕了)
7、对Ollama 进行 Postman API测试
curl --location 'http://192.168.xx.xx:11434/v1/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer ollama' \
--data '{
"model": "deepseek-r1:1.5b",
"messages": [
{
"role": "system",
"content": "直接给出最终答案,无需解释过程"
},
{
"role": "user", "content": "中国四大名著"
}
],
"show_reasoning": false,
"temperature": 0.1
}'
五、RAGFlow下载与安装(部署这个 内存一定要大)
1、环境准备 Window docker
( 如果是window 最好开启hyper -v ,然后更新一下系统,要不然可能无法安装 docker 桌面环境。)
下载网址:https://docs.docker.com/desktop/setup/install/windows-install/
双击安装,然后cmd 输入
docker --version
验证是否安装成功,然后修改目录(一定要做)
2、怎么下载以及运行
进入github官网 : https://github.com/ (科学上网you know)
然后,你就可以得到一个压缩包,解压就好了
接下来,进入解压后的文件中,找到
用记事本打开也行,最好vscode 打开 .env 文件,看 84 和 87 行,如图修改就好。(涉及GPU的调用,注意 CUDA版本 显卡驱动和 cuda 版本 12.6, 最后是 GPU.yml 启动)
3、运行正常的效果
进入 下载RAGFlow 的docker 目录,记住是docker 下面
在当前目录下,cmd 运行命令。接下来就是一直等待 资源下完,就OK了。
docker compose -f docker-compose.yml up -d
正常情况,容器都是正常启动。如果没有启动,说明有问题,那些没有启动,那些启动了,我们可以明显注意到。 中间的Port,就是 电脑和 docker 端口映射。比如,mysql 在docker端口为3306,现在他映射到window电脑端口为 5455。我们可以在Navicat 通过 5455 连接 ,mysql 用户名 root,密码在 RAGFlow 配置文件中。也就是 docker 目录下有相关配置文件,大家可以自行查看。
4、相关错误
问题:容器启动不健康、 注册失败。
查询方法:
查看日志(例如下面就是查看mysql的日志):
docker logs ragflow-mysql
可能原因,端口被占用。 然后,不健康可能原因,注意观察,内存情况。如果接近占满,可能是内存不足。
怎么修改端口,还是在docker目录下,找到 docker-compose文件,vscode打开:
聊天报被拒绝,这个一般不会出现。但是由于我切换了网络,导致ip变了,就无法连接上ollama,聊天就一直拒绝连接。最后,重新添加 RAGFlow 的模型就好。如何添加,下面分解。
六、搭建个人知识库
如果您前期一切正常,浏览器输入: http://localhost:81/login 默认是:80,但是我端口冲突,我修改为 81, 修改完成后,重新运行 docker 下载资源的命令就好。
首先注册,然后登陆
首先会添加模型(这里我已经添加过了,你要找到 Ollama ,如果没有请刷新当前网页) , Url 就是 你装 Ollama 的ip地址
例如:http://127.0.0.1:11434, 最大token 给个 3000 就好,因为是测试嘛。
Ollama list
成功后的页面如下:
接下来,新建招聘
接下来会进入配置页面:
不同的资料,对应不同解析方法,默认General 就可以。然后,其它方法大家可以去 这个网址查看:Configure knowledge base | RAGFlow 这个网站里面还有更多内容。
如图配置好后,点击下面保存。然后,点击新增加文件。这里我上传了一份测试pdf。
没有解析是无法使用的
点击开始解析,等待解析完毕。
这就是解析成功后的样子。
接下来点击 聊天
新建助理
就可以聊天了,但是 1.5b 和 7b 好像有点呆呆的。(所以我下面使用的Deepseek商用,目前服务器还没有到,前面说了嘛,是为了验证可行性)
七、怎么简单微调模型
1、关键词
可以添加关键词,RAGFlow 会快速检索出你想要的块。
2、问题
这个还没有学会怎么使用
3、描述
再聊天助理的配置中,这个提示引擎-系统 配置也非常关键
4、测试 (前面说了,现在是基于商用Deespeek API, 不是本地哦)