细胞间通讯(CCC)在多细胞生物的发育、维持稳态和疾病响应中扮演着关键角色。传统分析方法常局限于预定义的细胞类型,并且只关注单一尺度的细胞间通讯,这忽略了由配体和受体基因表达所定义的细胞内在层次结构,且无法捕捉多尺度细胞状态和跨尺度通讯模式。
为了克服这些限制,我们推出了CrossChat,这是一种新的方法,它利用单细胞和空间转录组数据全面解析CCC的全局和局部层次结构,揭示跨尺度的细胞群体通讯机制。
算法流程:
1. 数据输入与预处理:输入基因表达矩阵,根据需要对原始计数矩阵进行对数归一化,也可直接使用归一化矩阵。
2. 全局和局部层次结构分析
2.1 CrossChatH:全局层次结构分析
• 细胞间相似性计算:通过余弦相似性计算细胞间的相似性矩阵,构建K近邻图,节点代表细胞,边权重表示相似性。
• 层次聚类:使用随机游走算法(PyGenStability)在不同分辨率下检测细胞群落,构建细胞层次聚类树。
• 配体-受体簇检测与通讯计算:根据层次聚类树定义配体簇和受体簇,并使用CellChat计算不同细胞簇之间的配体-受体通讯活动。
2.2 CrossChatT:局部层次结构分析
• 基因关系图构建:基因表达矩阵二值化以构建支持矩阵,仅保留配体和受体基因;连接满足“不相交”或“包含”关系的基因对,生成基因关系图。
• 树结构检测:利用Bron-Kerbosch算法在基因关系图中寻找最大完全子图,每个子图表示一个配体或受体的树状层次结构。检测配体树和受体树之间是否存在配体-受体关系,并计算相关的局部通讯活动。
3. 下游分析与结果可视化
• 通路相似性分析:计算配体/受体在层次簇中的分布相似性,从而对信号通路进行分组分析。
• 交互关系可视化:展示多个配体树和受体树之间的交互关系,为配体-受体通讯提供全局视角。
• 基因重要性评估:统计配体/受体基因在所有树结构中出现的频率,量化其在层次结构中的重要性。
优势:
1. 无需预定义细胞类型,直接从基因表达构建层次结构。
2. 结合全局和局部层次视角,更全面揭示细胞间通讯复杂性。
3. 提供灵活的下游分析工具,从多个角度解读细胞通讯的层次结构。
参考文献:Nature Communications volume 15, Article number: 10542 (2024)