ZeRO分布式训练策略详解
一、核心设计原理
ZeRO(Zero Redundancy Optimizer)是微软提出的分布式训练优化框架,与传统数据并行方法不同,ZeRO通过将模型的参数、梯度和优化器状态分散到多个设备上,从而实现内存和计算资源的高效利用。
ZeRO通过三级分片策略消除内存冗余,实现超大规模模型训练。其核心演进路线分为三个阶段:
1.1 ZeRO-1:优化器状态分片
- 分片对象:优化器参数(如Adam的动量、方差)
- 显存优化:显存占用降低4倍(N=4 GPU时)
- 通信机制:反向传播后执行All-Reduce同步梯度
- 适用场景:混合精度训练场景下的Adam优化器
1.2 ZeRO-2:优化器状态+梯度分片
- 分片对象:梯度张量(Gradients)
- 显存优化:显存占用再降2倍(总降低8倍)
- 通信优化:梯度聚合后立即释放内存
- 技术优势:保留数据并行的通信效率
1.3 ZeRO-3:优化器状态、梯度和模型权重参数分片
- 分片对象:模型权重(Parameters)
- 显存优化:显存消耗与GPU数量成反比
- 通信开销

最低0.47元/天 解锁文章
1666

被折叠的 条评论
为什么被折叠?



