ZeRO分布式训练策略

ZeRO分布式训练策略详解

一、核心设计原理

ZeRO(Zero Redundancy Optimizer)是微软提出的分布式训练优化框架,与传统数据并行方法不同,ZeRO通过将模型的参数、梯度和优化器状态分散到多个设备上,从而实现内存和计算资源的高效利用。

ZeRO通过三级分片策略消除内存冗余,实现超大规模模型训练。其核心演进路线分为三个阶段:

1.1 ZeRO-1:优化器状态分片

  • 分片对象:优化器参数(如Adam的动量、方差)
  • 显存优化:显存占用降低4倍(N=4 GPU时)
  • 通信机制:反向传播后执行All-Reduce同步梯度
  • 适用场景:混合精度训练场景下的Adam优化器

1.2 ZeRO-2:优化器状态+梯度分片

  • 分片对象:梯度张量(Gradients)
  • 显存优化:显存占用再降2倍(总降低8倍)
  • 通信优化:梯度聚合后立即释放内存
  • 技术优势:保留数据并行的通信效率

1.3 ZeRO-3:优化器状态、梯度和模型权重参数分片

  • 分片对象:模型权重(Parameters)
  • 显存优化:显存消耗与GPU数量成反比
  • 通信开销
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值