利用MATLAB解决现代控制理论的计算问题(这一篇文章就够了)

一、应用MATLAB建立线性系统状态空间描述

1.状态空间模型

已知线型定常连续系统Σ(A,B,C,D),可调用函数ss(·)建立其状态空间模型,调用格式为:

sys=ss(A,B,C,D)
其中sys为连续系统的状态空间描述。

已知线型定常离散系统Σ(G,H,C,D),可调用函数ss(·)建立其状态空间模型,调用格式为:

sys=ss(G,H,C,D,Ts)
其中,Ts为采样周期,输出sys为离散系统的状态空间描述。
2.传递函数模型

num=(bm,bm-1, … , b0)
den=(1,an-1, … , a0)
单输入单输出线型定常连续系统的调用格式为:

sys=tf(num,den)

单输入单输出线型定常离散系统的调用格式为:

sys=tf(num,den,Ts)

其中,输出sys为连续或离散系统的状态空间描述。

3.传递函数转换为状态空间模型
[A,B,C,D]=tf2ss(num,den)

执行该命令后,输出为状态空间模型的系数矩阵A,B,C,D。

4.状态空间模型转换为传递函数
[num,den]=ss2tf(A,B,C,D)

执行该命令后,输出为传递函数分子和分母多项式的系数数组num,den。

5.状态空间模型的线性变换

给定线性非奇异变换矩阵P:

sys1=ss2ss(sys,P)

其中,sys和sys1分别为线性变换前与变换后的状态空间模型。

6.状态空间模型转化为约当标准型
[P,J]=jordan(A)

其中,J是A的约当标准型,P是将A变换为J的线性变换矩阵。

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

唱戏先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值