傅里叶变换

写在前面

首先,我下面所写的内容全部是我看视频的笔记,如果您想直接看视频点进去就行了:傅里叶变换的数学推导
如果您对傅里叶系列的东西没有概念,可以看:
不用任何公式解释清楚傅里叶系列的大佬文章

1.理解三角函数具有正交性

1.1什么是函数的正交性

函数的正交性,我们有一点陌生所以我们应当从我们熟知的向量开始,从向量正交开始扩展我们知道:
如果有下面的两个向量:
在这里插入图片描述
当下面的式子成立的时候我们就可以说这两者是相互垂直的。
在这里插入图片描述
也就是:
在这里插入图片描述
这里我们看到了累加符号,这里是离散当中的累加,那么我们对应我们联系的函数当中的正交就是函数相乘积分为0的时候两者是相互正交的,也就是下面的式子:
在这里插入图片描述
当然我们应当注意的这里的负无穷到正无穷的问题我们并不绝对,正常来说这里应该是函数的定义域更加贴切。

1.2开始真正理解三角函数的正交性

通过上面的内容我们已经理解了什么是函数正交性,所以我们可以开始理解三角函数的正交性问题。
具体的情况和证明如下:
首先是没有m-n≠0的情况下,我们应当这样证明:
在这里插入图片描述
与此同时,我们注意一个问题我们这里其实并没有使用m-n≠0这个条件,也就是说不论什么时候,只要是一个sin和一个cos相乘,在(-π,π)上的积分都是一个0。

在具有m-n≠0的条件的情况下:
当然仅仅证明上面的这一部分是不对的,所以我们还应该加入一个更强的条件也就是m-n≠0来继续向下证明,我们还得另外证明:
在这里插入图片描述

在这里插入图片描述
这样,我们就可以说各个内容之间都是正交的
现在我们就能很好的理解一个三角函数具有的正交性问题。
也就是说下面的内容两两之间具有正交性(自己和自己并不正交大家自己证明一下就明白了),当然这个0不必被考量进去:
在这里插入图片描述
最后,我们看一下两个相同内容的(-π,π)的积分是多少:
易得,他们都是π。

在这里插入图片描述

1.3具有正交性那么有什么作用呢?

这里我们费了这么大力气终于明白了一个正交性有什么意义呢?

  • 1.相互正交的三角函数可以构成一个高维空间的坐标系。
    这里我们应当继续理解这个正交的问题,正交就是相互垂直,什么相互垂直,坐标系的坐标轴相互垂直。
    那么我们使用这些相互垂直的三角函数不就是建立了一个高维空间的坐标系吗?
  • 2.那么这个坐标系是表示什么的?
    这个问题其实就非常容易回答了,既然是用函数表示那么当然也是表示一个函数了。
    与此同时,因为三角函数本身就具有周期性,特别地来说在上面我列举出的三角函数组,他们就具有一个2π的周期。
    所以这个东西当然是用来表示周期函数的。
1.4总结

理解上面的内容之后我们使用三角函数表示周期函数就显得特别自然。

2.使用三角函数表示周期函数(傅里叶级数)

2.1先思考最简单的问题

我们先思考最简单的2π为周期的函数
在这里插入图片描述
既然这个函数的周期为2π,那么我们就需要使用周期为2π的函数对其进行表示也就是下面这个情况:
在这里插入图片描述
也就是我们将所有的三角函数都使用上,然后我们开始计算系数就可以了。当然很多教材上面是从1开始累加的,大约就是(这里的a0前面其实还是少了系数0.5的,原因后面解释):
在这里插入图片描述
其实到这里事实就比较清楚了,实际上不就是一个待定系数法吗?先把目标结果设置出来再计算其中的具体参数。接下来就是充分利用其中得固定结构的问题。
当然这里的方法有很多,其中最常用的就是乘上对应的三角函数之后进行积分的方法。
例如我们两边同时乘上cos0x(1)之后进行积分
在这里插入图片描述
当然这里我们就得到了:
在这里插入图片描述
在这里插入图片描述

很多教材上使用的a0/2其实就是为了让这里的结果更统一更好看一些,我们理解了就行。

2.2再思考较为复杂的问题

现在情况是这样的
在这里插入图片描述
当然这里使用2L而不是简单的使用一个T来做代表,是为了下面书写的时候较为方便,其实他和T是完全等价的,既然现在的周期发生了变换,我们就得使用新的周期函数进行计算了也就是:
在这里插入图片描述
当然这个时候该是0的还是0,只不过原来是π的部分发生了变化:
在这里插入图片描述

所以我们的情况就变成了:
在这里插入图片描述
好了这样就成功理解了傅里叶级数,但是这样做还不是最完美的情况,我们还得继续将其转化为周期为T的情况。

2.3再思考较为复杂的问题

我们是时候引入一个新的变量来进行简化了
在这里插入图片描述
经历了各种磨难我们终于来到了
在这里插入图片描述
这里我们不再进重新推算,而是直接使用转换,所以我们得把周期为T的东西明确一下,不难看出下面的内容全部都是周期为T的内容。
在这里插入图片描述
当然这里的主要判定依据是周期函数乘上周期函数还是周期函数。
所以我们类似的可以做积分的转化,我们具体推算一个,其他都自然而然的产生了。
在这里插入图片描述
自然而然下面的内容就产生了:
在这里插入图片描述

这样的话,我们直接转化一下就出现了下面的结果。
在这里插入图片描述
当然我们还可以得到结果:
在这里插入图片描述

3.傅里叶变换

3.1和欧拉公式结合的傅里叶级数

上面的内容其实都是傅里叶变换的基础知识,并不是傅里叶变换。
下面开始才是真正的傅里叶变换的部分,这一切其实是从欧拉公式开启的
在这里插入图片描述
可以看到其实就是通过欧拉公式,表示出三角函数的结果,之后将这个表示代入到原来的傅里叶级数当中,得到新的结果,为了得到统一的结果进行变换,最后得到了较为整齐的结果。得到了较为好看的ck。
我们注意到这里的Ck其实是通过ak和bk表示出来的所以我们应该使用下面的结果对其进行再次化简:(当然这个东西就是前面傅里叶级数的结果)
在这里插入图片描述
我们首先处理k大于0的情况:(这里其实最大的难点就是我们如何利用三角函数的特性凑出来一个欧拉公式的形式,之后反着换回去)
在这里插入图片描述

之后小于0的部分就显得非常自然了:
在这里插入图片描述

处理完这两个之后k=0的方向就确定了。在这里插入图片描述
之后我们将所有的情况处理之后我们就可以说:
在这里插入图片描述

3.2结合高斯公式的傅里叶级数有什么作用?

现在我们思考一下,我们推算了这么半天到底产生了什么作用?
那么思考产生什么作用我们得有一个比较标准,和什么比较就变得十分关键,所以我们应该和原来的傅里叶级数进行比较:、
我们将两者放在这里:
在这里插入图片描述
我们可以看到直接将这两个东西放在这里我们还是没有办法进行比较,因为我们对这个东西没有有效的细分。
比较应该分为两个部分:

  • 1.相加和的函数部分
    在这里插入图片描述
    不同之处:
    我们看这里好似没有什么区别,不都是sin和cos吗?其实并不是,上面的怎么加和都是xoy这个平面内的一个函数。而下面的是xoy和i组成的一个空间当中的函数。也就是这个空间函数和原来的平面函数相比较其实是一个细分(因为两个不同的空间函数可能可以投影为某一个确定平面内的同一个函数)
    相同之处
    这里两者其实都是某一确定频率的函数。
    总结
    也就是两者都是按照频率的不同对原来的函数进行拆分,但是下面的函数拆分更加细致一些。也就是下面的细分将获得更多的信息。
  • 2.两者系数的部分:
    我们直接将系数部分提取出来,
    在这里插入图片描述
    有了上面理解细分函数的经验,我们这里理解系数的问题就比较自然了,其实就是函数细分的更加细致,系数就获得了更多的信息。也就变得维度更加高一点,an和bn都是一维的信息而cn是一个二维的信息。
    或者我们还可以换个角度理解二维信息对应到一维信息的时候肯定有损失,例如:虚数的取模运算。

比较了区别之后我们就可以回答作用了:
这个和高斯公式结合的过程,其实就是通过在一个频率上的细分获得更加丰富的信息。

3.3所以就完成了从时遇到频域的转换

什么是这个转换:
不用任何公式解释清楚傅里叶系列的大佬文章
好了显然,这里就是完成了这个转换。将原来在时域的函数转化到了频域,并在频率上做了充分的细分。

3.4怎么扩展到任何没有周期的函数

先看系数怎么变换:
没有周期其实可以理解成一个周期无限大的情况,周期无限大,将整个函数都圈在了这一个周期当中。
在这里插入图片描述

我们看一下原来的情况:可以看到就是原来是一个离散的参数列表,在周期无限大之后变成了一个连续的函数。
在这里插入图片描述
当然这个积分,就算周期变大,这个数也能算出来。
在这里插入图片描述
总结:系数就是从原来的离散情景变成了连续的情景。

  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CUHK-SZ-relu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值