"""
Sobel算子依然是一种过滤器,只是其是带有方向的。在OpenCV-Python中,使用Sobel的算子的函数原型如下:
dst = cv2.Sobel(src, ddepth, dx, dy[, dst[, ksize[, scale[, delta[, borderType]]]]])
"""
import cv2
import numpy as np
img = cv2.imread("cat.jpg")
x = cv2.Sobel(img, cv2.CV_16S, 1, 0)
y = cv2.Sobel(img, cv2.CV_16S, 0, 1)
absX = cv2.convertScaleAbs(x) # 转回uint8
absY = cv2.convertScaleAbs(y)
dst = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
cv2.imshow("absX", absX)
cv2.imshow("absY", absY)
cv2.imshow("orgion",img)
cv2.imshow("Result", dst)
cv2.waitKey(0)
cv2.destroyAllWindows()
"""
图像中的边缘区域,像素值会发生“跳跃”,对这些像素求导,在其一阶导数在边缘位置为极值,这就是Sobel算子使用的原理——极值处就是边缘
Laplace函数实现的方法是先用Sobel 算子计算二阶x和y导数,再求和
dst = cv2.Laplacian(src, ddepth[, dst[, ksize[, scale[, delta[, borderType]]]]])"""
img = cv2.imread("cat.jpg", 0)
gray_lap = cv2.Laplacian(img, cv2.CV_16S, ksize=3)
dst = cv2.convertScaleAbs(gray_lap)
cv2.imshow('laplacian', dst)
cv2.waitKey(0)
cv2.destroyAllWindows()
opencv图像处理(七)sobel、Laplacian
最新推荐文章于 2023-12-16 08:04:38 发布