opencv图像处理(七)sobel、Laplacian

"""
Sobel算子依然是一种过滤器,只是其是带有方向的。在OpenCV-Python中,使用Sobel的算子的函数原型如下:
dst = cv2.Sobel(src, ddepth, dx, dy[, dst[, ksize[, scale[, delta[, borderType]]]]])

"""

import cv2
import numpy as np

img = cv2.imread("cat.jpg")

x = cv2.Sobel(img, cv2.CV_16S, 1, 0)
y = cv2.Sobel(img, cv2.CV_16S, 0, 1)

absX = cv2.convertScaleAbs(x)  # 转回uint8
absY = cv2.convertScaleAbs(y)

dst = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)

cv2.imshow("absX", absX)
cv2.imshow("absY", absY)
cv2.imshow("orgion",img)
cv2.imshow("Result", dst)

cv2.waitKey(0)
cv2.destroyAllWindows()

"""
图像中的边缘区域,像素值会发生“跳跃”,对这些像素求导,在其一阶导数在边缘位置为极值,这就是Sobel算子使用的原理——极值处就是边缘
Laplace函数实现的方法是先用Sobel 算子计算二阶x和y导数,再求和
dst = cv2.Laplacian(src, ddepth[, dst[, ksize[, scale[, delta[, borderType]]]]])"""

img = cv2.imread("cat.jpg", 0)
gray_lap = cv2.Laplacian(img, cv2.CV_16S, ksize=3)
dst = cv2.convertScaleAbs(gray_lap)

cv2.imshow('laplacian', dst)
cv2.waitKey(0)
cv2.destroyAllWindows()

参考:https://blog.csdn.net/sunny2038/article/details/9170013

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值