博弈论

巴什博奕

两个人,n个石子,每次可以取1-m个石子,不能拿的人失败,另一个人胜利

  • 1 <= 石子数量 <= m 时,先手必胜
  • m + 1 = 石子数量 时,先手必败
  • m + 2 <= 石子数量 <= 2 * m 时,先手可以让石子数量变为 m + 1 先手必胜

推广可得

  • 当n = k * (m + 1) + r

先手拿走r个,每次都可以让另一个人面对k * (m + 1)的棋局,直到k = 1。所以先手必胜

  • 当n = k * (m + 1)

无论先手拿几个,后手每次都可以让先手面对k * (m + 1)的棋局,直到k = 1。所以先手必败

#include<bits/stdc++.h>

using namespace std;

int t,n,m;

int main()
{
    cin >> t;
    while(t -- )
    {
        cin >> n >> m;
        if(n % (m + 1) == 0)cout << "second" << endl;
        else cout << "first" << endl;
    }
    return 0;
}

斐波那契博奕

一堆石子,先取者可以任意取,但是不能取完,以后每个人取得石子数都不能超过上个人的两倍

先手必败,当且仅当石子数为斐波那契数时

#include<bits/stdc++.h>

using namespace std;

typedef long long LL;

long long feb[100]={0,1};
int n;

int main()
{
    for(int i = 2;i <= 100; ++ i)
    {
        feb[i] = feb[i - 1]+feb[i - 2];
    }

    //cout << feb[100] << endl;

    while(cin >> n && n)
    {
        if(binary_search(feb,feb + 100,n))cout << "Second win" << endl;
        else cout << "First win" <<endl;
    }
    return 0;
}

威佐夫博弈

有两堆石子,每次可以从一堆石子中取任意多的石子,或者从两堆石子中取同样多的石子,不能取的人输

两堆石子(x , y)(x < y),先手必败,当且仅当
( y − x ) × ( 1 + 5 ) ÷ 2 = x (y - x)\times(1+\sqrt{5})\div2=x yx×(1+5 )÷2=x

#include<bits/stdc++.h>

using namespace std;

int a,b;

int main()
{
    double t=(1.0+sqrt(5))/2;

    while(cin >> a >> b)
    {
        if(b < a)swap(a,b);
        if((int)((b - a) * t) == a)cout << 0 <<endl;
        else cout << 1 << endl;
    }
    return 0;
}

尼姆博奕

有n堆石子,两个人可以从任意一堆石子中拿任意多个石子(不能不拿),没法拿的失败

当n堆石子数量异或和为0时,先手必败。

当n堆石子数量异或和不为0,可以某一个数减去n-1堆石子数量异或和,先手必胜。

#include<bits/stdc++.h>

using namespace std;

const int N=1e6+5;

int ans,cnt,arr[N],m;

int main()
{
    while(cin >> m && m)
    {
        ans = cnt = 0;
        for(int i = 0;i < m; ++ i)
        {
            cin >> arr[i];
            ans ^= arr[i];
        }
        if(ans == 0)cout << 0 <<endl;
        else
        {
            for(int i = 0;i < m; ++ i)
            {
                int t = ans ^ arr[i];//求n-1堆石子的异或和,一个数字被异或和两次,相当于没有参加运算。一个数异或2次得0,0异或任何值都为它本身
                if(arr[i] >= t)cnt ++ ;//如果可以减,方案加一
            }
            cout << cnt <<endl;
        }
        
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

肥羊也

感谢给肥羊投喂!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值