本期内容主要是总结一下在量子计算中常见的几类矩阵以及算子,分别总结一下我所理解的各类矩阵、算子的特性以及定义,因为在HHL原文阅读过程中看到厄米特矩阵,我就联想到了许许多多其他的矩阵,我想A要是是其他矩阵中的那一类除去原文中提供的方法我还有没有别的方式可以解决,但是一想脑子里面全是浆糊,啥是啥全混了,我用了一晚上的时间终于给整明白了,这篇笔记也就诞生了,如果有错误的地方欢迎指正。
1.伴随
先回顾一下线性代数中伴随矩阵的概念:
但是在量子中,伴随(也称作Hermite共轭)可不等同于伴随矩阵,它是在对矩阵A进行共轭转置操作,记作:
其中{*}表示的是复共轭,{T}表示的是转置,这里需要特别注意的是,再进行共轭操作时,若原来的数中包含虚部,此时要取反,例如:
习惯上如果|v>是向量,它的伴随是<v|,由此可以推算出:
2.正定算子、半正定算子、正规算子、正规矩阵
在《量子计算与量子信息》这本书中,对半正定算子、正定算子以及正规算子的定义如下:
半正定算子A定义为:对于任意向量|v>,(|v>,A|v>)>=0,如果(|v>,A|v>)>0,那么此时A是正定算子。
半正定算子一定是满足Hermite的,也就是这个矩阵的共轭转置和矩阵本身是相等的,正定算子是半正定算子的一种特殊情况,这也就是说正定算子也一定是Hermite的。
如果A是正规算子这时候A满足下式:
对于正规算子而言,有这样一条特殊性质,我们称之为“谱分解”定理,简单描述就是正规算子一定能够进行对角化表示,反过来能够进行对角化表示的也一定是正规算子。书中有这样一句话“一个算子是正规算子当且仅当它可对角化 ”大家可以好好体会一下。
因为半正定算子、正定算子是满足Hermite的,这也就是说半正定算子和正定算子他们都是正规算子,他们是能够进行对角化表示的。
提到正规算子,就要回忆一下正规矩阵的相关概念:
通过定义可以看出来,正规矩阵也就是正规算子(正规算子不一定会是Hermite的),是可以进行对角化表示的,但是我们此时并不能确定正规矩阵是否就是Hermite的,因为A和它的共轭转置之间是否满足交换性我们并不清楚,所以这里就产生了一个这样的结论:
如果正规矩阵是Hermite的,当且仅当它的特征值是实数,这时候矩阵是厄米特矩阵,厄米特矩阵它的对角线上的元素都是实数,矩阵的共轭转置等于它本身这就是厄米特矩阵,而且这个矩阵本身还得是一个方阵。
补充一下厄米特矩阵的性质:
说到厄米特矩阵,顺便补充一下酉矩阵和幺正矩阵,所谓的酉矩阵就是矩阵的共轭转置和矩阵自身的乘积是个单位阵;幺正矩阵是矩阵的共轭转置等于矩阵的逆,其实无论是厄米特矩阵、幺正矩阵、酉矩阵、正规矩阵无形之中都要求这个矩阵是方阵,任何矩阵都存在它的共轭转置,但是这个矩阵具体是哪一类矩阵还需要细细推算。下面是我个人对于上述内容的总结,如果有错误,欢迎批评指正。
下面是上述结论的相关证明:
最后的最后我想说一下极式分解,当时黄皮书上面是这样介绍的:“极式分解和奇异值分解可以使我们把一般的线性算子分解成酉算子和半正定算子的乘积”,看到这个一般算子,我以为对于非方阵的情况也可以利用极式分解轻松分解,还可以降维,但是算的和想的不一样,还以为课本出错了,现在想想我也真自信。百度之下才发现还是想的太简单,极式分解和奇异值分解都是针对方阵而言的,后来在《量子信息》这门课上,终于看到了极式分解这个少爷它的应用–仿射映射。我还以为奇异值可能是负的,感谢我的师兄给我纠正了这个错误,不然我就在错误的道路上越走越远。