KITTI数据集学习笔记

Kitti数据集

本文为笔者自我学习的笔记,本人刚入门3D视觉,若有错误的地方恳请各位指正。另外参考了一篇热门博客:https://blog.csdn.net/Solomon1558/article/details/70173223。并使用了其中的一幅图像,侵删。

1. 简单介绍

​ Kitti数据集致力于提供一个更贴合户外驾驶场景的计算机视觉数据集。Kitti提供了一些自动驾驶场景下具有挑战性的测试基准:立体场景(stereo)、光学流动(optical flow)、视觉测距(visual odometry)、同时定位和地图构建(SLAM)、3D物体检测等。

​ Kitti包含中等城市市区、城郊和高速公路的环境采样。有389对立体场景和光流图(分辨率为1240*376,经过50%的基础事实校正)、39.2 km视觉测距序列以及超过200k 3D标注物体的图像(人工标注,比如汽车、货车、行人等)组成。

2. 具体的挑战和解决方案

​ 具体遇到的挑战有:

  • 实时采集大量的数据;

  • 不同速率工作的传感器的校准;

  • 最小化产生基础事实(ground truth)需要的监督数量;

  • 为每个基准选取合适的序列和框架、每个任务的开发指标。

    解决方案如下:

  • 传感器的装配:两个彩色和两个灰度摄像机,一个激光扫描器,一个GPS定位单元。相同种类的摄像机之间距离为54cm,不同种之间

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值