Kitti数据集
本文为笔者自我学习的笔记,本人刚入门3D视觉,若有错误的地方恳请各位指正。另外参考了一篇热门博客:https://blog.csdn.net/Solomon1558/article/details/70173223。并使用了其中的一幅图像,侵删。
1. 简单介绍
Kitti数据集致力于提供一个更贴合户外驾驶场景的计算机视觉数据集。Kitti提供了一些自动驾驶场景下具有挑战性的测试基准:立体场景(stereo)、光学流动(optical flow)、视觉测距(visual odometry)、同时定位和地图构建(SLAM)、3D物体检测等。
Kitti包含中等城市市区、城郊和高速公路的环境采样。有389对立体场景和光流图(分辨率为1240*376,经过50%的基础事实校正)、39.2 km视觉测距序列以及超过200k 3D标注物体的图像(人工标注,比如汽车、货车、行人等)组成。
2. 具体的挑战和解决方案
具体遇到的挑战有:
-
实时采集大量的数据;
-
不同速率工作的传感器的校准;
-
最小化产生基础事实(ground truth)需要的监督数量;
-
为每个基准选取合适的序列和框架、每个任务的开发指标。
解决方案如下:
-
传感器的装配:两个彩色和两个灰度摄像机,一个激光扫描器,一个GPS定位单元。相同种类的摄像机之间距离为54cm,不同种之间