【Blender】贝塞尔曲线(Bezier)和nurbs(NURBS)曲线有什么关系吗?

本文探讨了贝塞尔曲线、B样条曲线和NURBS曲线之间的关系。贝塞尔曲线作为最早提出的简单曲线类型,仅支持全局修改。B样条曲线随后出现,解决了贝塞尔曲线的局限。NURBS曲线则提供了更复杂的定义,能够表达更灵活的曲线形状,特别适合绘制椭圆、正圆和双曲线。NURBS曲线由控制点、权重值、阶数和节向量共同定义,而当权重值均为1时,NURBS曲线退化为B样条曲线;若B样条曲线的阶数等于控制点数且特定条件满足,它将退化为贝塞尔曲线。这些曲线在计算机图形学和建模中有着广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【Blender】贝塞尔曲线(Bezier)和nurbs(NURBS)曲线有什么关系吗?

【Blender】贝塞尔曲线(Bezier)和nurbs(NURBS)曲线有什么关系吗?
在这里插入图片描述

  • 贝塞尔曲线最早提出,也最简单,但只能全局修改。
  • B样条曲线稍后提出,解决了贝塞尔曲线全局修改的喝到。
  • NURBS曲线最后提出,定义最复杂,能表达的曲线最灵活。主要是解决B样条不能画椭圆、正圆和双曲线的问题。

下面三个图是根据相同控制点使用不同曲线画出来结果。

1.NURBS曲线的公式:

在这里插入图片描述

下面四个元素共同定义了NURBS曲线:
  • 控制点,P0, P1, P2, …, Pn,共n+1个
  • 权重值,w0, w1, w2, …, wn,共n+1个
  • p阶
  • 节向量U ,u0, u1, u2, …, um,共m+1个

并且 m, n, p 三者的数量关系满足:[公式]。
在这里插入图片描述

2.B样条曲线的公式

如果所有权重值均等于1,则NURBS曲线将退化为B样条曲线。
在这里插入图片描述
下面三个元素共同定义了B样条曲线:

  • 控制点,P0. P1, p2, …, Pn,共n+1个
  • p阶
  • 节向量U ,u0, u1, u2, …, um ,共m+1个

并且 [公式] 三者的数量关系满足:
在这里插入图片描述
B-样条

贝塞尔曲线公式

如果B样条曲线的n=p(即,最大控制点下标=阶数), 节向量有2(p+1)个knot, 并且分别有p+1个knot在首尾固定。这个B样条曲线就退化成贝塞尔曲线。
在这里插入图片描述
仅需要控制点就定义了贝塞尔曲线的形态。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值