第二章 逻辑代数基础(上)

本章介绍分析数字逻辑功能的数学方法。

概述
  1. 二值逻辑:只有两种对立逻辑状态的逻辑关系。
  2. 逻辑运算:与、或、非、与非、或非、与或非、异或、同或
  3. 数字电路是一种开关电路,输入、输出量是高、低电平,可以用二值变量0,1来表示。输入和输出之间的关系是一种逻辑上的因果关系。
  4. 逻辑代数有交换律、结合律、分配律,也可以用字母表示变量,即逻辑变量。
  5. 逻辑运算定律、卡诺图化简法是本章的重点。

2.1 逻辑代数的基本运算、常用公式和基本定理

2.1.1 逻辑代数的三种基本运算
  1. 与 AND:所有条件都满足时,才会发生。有0出0,全1才出1 。与运算逻辑式:
    Y = A ∙ B Y=A\bullet B Y=AB

    与门:实现逻辑与运算的门电路为与门。当存在n个逻辑变量做与运算时,其逻辑式表示为:

Y = A 1 A 2 ⋯ A n Y=A_1A_2 \cdots A_n Y=A1A2An

  1. 或 OR:逻辑求和。其中一个条件满足时就会发生。有1出1,全0才出0 。与运算逻辑式:
    Y = A + B Y=A+B Y=A+B
    当存在n个逻辑变量做或运算时,其逻辑式表示为:
    Y = A 1 + A 2 + ⋯ + A n Y=A_1+A_2+\cdots+A_n Y=A1+A2++An

  2. 非 NOR:逻辑求反。条件具备时不发生,条件不具备时发生。
    Y = A ′ 或 Y =   A 或 Y = A ˉ Y=A' 或 \\Y=~A 或 \\Y=\bar{A} Y=AY= AY=Aˉ

2.1.2 与非、或非、异或、同或
  1. 与非 NAND:先与运算后非运算的组合。有0出1,全1才出0。
    Y = ( A B ) ′ Y=(AB)' Y=(AB)

  2. 或非 NOR:先或运算后非运算的组合。有1出0,全0才出1。
    Y = ( A + B ) ′ Y=(A+B)' Y=(A+B)

  3. 与或非:先与后或在非三种运算的组合。ABCD全为1时,输出Y才为0
    Y = ( A B + C D ) ′ Y=(AB+CD)' Y=(AB+CD)

  4. 异或:两个输入逻辑变量不同时为1,相同为0
    Y = A ⊕ B = A B ′ + A ′ B Y=A \oplus B=AB'+A'B Y=AB=AB+AB

    异或运算的性质:

    1). 交换律:
    A ⊕ B = B ⊕ A A\oplus B=B\oplus A AB=BA
    2). 结合律:
    A ⊕ ( B ⊕ C ) = ( A ⊕ B ) ⊕ C A\oplus (B \oplus C)=(A\oplus B) \oplus C A(BC)=(AB)C
    3). 分配律:
    A ( B ⊕ C ) = A B ⊕ A C A(B \oplus C)=AB\oplus AC A(BC)=ABAC
    4). 推论:当n个变量做异或运算时,若有偶数个变量为1,则输出为0;若奇数个变量取1时,则输出为1。真值表如下:

    任意数量的0异或,结果都为0;偶数个1异或为0,奇数个1异或为1
    ABY逻辑式
    000-
    011A’B
    101AB’
    110-

    A ⊕ A ˉ = 1 A ⊕ A = 0 A ⊕ 1 = A ˉ A ⊕ 0 = A A\oplus \bar{A}=1\\ A\oplus A=0\\ A\oplus 1=\bar{A}\\ A\oplus 0=A AAˉ=1AA=0A1=AˉA0=A

  5. 同或:两个变量相同时为1,不同为0。
    Y = A ⊙ B = ( A ⊕ B ) ′ = A B + A ′ B ′ Y=A\odot B=(A\oplus B)'=AB+A'B' Y=AB=(AB)=AB+AB


2.2 逻辑代数的基本公式和常用公式

2.2.1 基本公式-布尔恒等式

a. 常数与变量的关系定理
0 ∙ A = 0 1 ∙ A = 1 1 + A = 1 0 + A = A 1 ′ = 0 ; 0 ′ = 1 0 \bullet A=0\\1 \bullet A=1\\ 1+A=1\\0+A=A\\1'=0;\\0'=1\\ 0A=01A=11+A=10+A=A1=0;0=1
b. 交换律
A ∙ B = B ∙ A A + B = B + A A \bullet B=B \bullet A\\ A+B=B+A\\ AB=BAA+B=B+A
c. 结合律
A ∙ ( B ∙ C ) = ( A ∙ B ) ∙ C A + ( B + C ) = ( A + B ) + C A \bullet (B\bullet C)=(A \bullet B)\bullet C\\ A+(B+C)=(A+B)+C\\ A(BC)=(AB)CA+(B+C)=(A+B)+C
d. 分配律
A ∙ ( B + C ) = A ∙ B + A ∙ C A + B ∙ C = ( A + B ) ∙ ( A + C ) A \bullet (B+C)=A \bullet B+A \bullet C\\ A+B\bullet C=(A+B)\bullet(A+C) \\ A(B+C)=AB+ACA+BC=(A+B)(A+C)
e. 互补律
A ∙ A ′ = 0 A + A ′ = 1 A \bullet A'=0\\ A+A'=1\\ AA=0A+A=1
f. 重叠律
A ∙ A = A A + A = A A \bullet A=A\\ A+A=A\\ AA=AA+A=A
g. 非非律
( A ′ ) ′ = A ; (A')'=A;\\ (A)=A;

2.2.2 常用公式

a. 吸收律
两 个 乘 积 相 加 时 , 如 果 其 中 一 项 包 含 另 一 项 , 则 这 一 项 是 多 余 的 , 可 以 删 去 。 A + A ∙ B = A 在 当 一 项 和 包 含 这 一 项 的 和 相 乘 时 , 其 和 项 可 以 消 掉 A ∙ ( A + B ) = A + A ∙ B = A 两 个 乘 积 相 加 时 , 如 果 其 中 一 项 包 含 另 一 项 的 取 反 因 子 , 这 此 取 反 因 子 是 多 余 的 , 可 以 从 该 项 中 删 去 。 A + A ′ ∙ B = A + B 两个乘积相加时,如果其中一项包含另一项,则这一项是多余的,可以删去。\\A+A\bullet B=A\\ 在当一项和包含这一项的和相乘时,其和项可以消掉\\A\bullet(A+B)=A+A\bullet B=A\\ 两个乘积相加时,如果其中一项包含另一项的取反因子,这此取反因子是多余的,可以从该项中删去。\\A+A'\bullet B=A+B\\ A+AB=AA(A+B)=A+AB=AA+AB=A+B
b. 摩根定律
( A ∙ B ) ′ = A ′ + B ′ ( A + B ) ′ = A ′ ∙ B ′ (A \bullet B)'=A'+B'\\ (A+B)'=A'\bullet B' (AB)=A+B(A+B)=AB
c. 若干公式
两 个 乘 积 相 加 时 , 如 果 它 们 其 中 的 一 个 因 子 相 同 , 而 另 一 个 因 子 取 反 , 则 两 项 合 并 。 A ∙ B + A ∙ B ′ = A 如 果 某 项 和 包 含 这 一 项 的 乘 积 项 取 反 相 乘 时 , 这 一 项 可 以 删 掉 A ∙ ( A ∙ B ) ′ = A ∙ B ′ 当 某 项 取 反 和 包 含 这 一 项 的 乘 积 项 取 反 相 乘 时 , 则 指 保 留 取 反 项 A ′ ∙ ( A ∙ B ) ′ = A ′ 在 三 个 乘 积 项 相 加 时 , 如 果 前 两 项 中 的 一 个 因 子 互 为 反 , 那 么 剩 余 的 因 子 组 成 的 另 一 项 是 多 余 的 , 可 以 删 去 。 A ∙ B + A ′ ∙ C + B ∙ C = A ∙ B + A ′ ∙ C A ∙ B + A ′ ∙ C + B ∙ C ∙ D = A ∙ B + A ′ ∙ C 两个乘积相加时,如果它们其中的一个因子相同,而另一个因子取反,则两项合并。\\ A\bullet B+A\bullet B'=A\\ 如果某项和包含这一项的乘积项取反相乘时,这一项可以删掉\\ A\bullet (A\bullet B)'=A\bullet B'\\ 当某项取反和包含这一项的乘积项取反相乘时,则指保留取反项\\ A'\bullet (A\bullet B)'=A'\\ 在三个乘积项相加时,如果前两项中的一个因子互为反,那么剩余的因子组成的另一项是多余的,可以删去。\\ A\bullet B+A'\bullet C+B\bullet C=A\bullet B+A'\bullet C\\ A\bullet B+A'\bullet C+B\bullet C\bullet D=A\bullet B+A'\bullet C AB+AB=AA(AB)=ABA(AB)=AAB+AC+BC=AB+ACAB+AC+BCD=AB+AC
注释:c中的公式可由基本公式推理
A ∙ B + A ∙ B ′ = A ∙ ( B + B ′ ) A ∙ ( A ∙ B ) ′ = A ∙ ( A ′ + B ′ ) = 0 + A ∙ B ′ A ′ ∙ ( A ∙ B ) ′ = A ′ ∙ ( A ′ + B ′ ) = A ′ + A ′ ∙ B ′ = A ′ ∙ ( 1 + B ′ ) = A ′ A\bullet B+A\bullet B'=A\bullet (B+B')\\ A\bullet (A\bullet B)'=A\bullet (A'+B')=0+A\bullet B'\\ A'\bullet (A\bullet B)'=A'\bullet (A'+B')=A'+A'\bullet B'=A'\bullet (1+B')=A' AB+AB=A(B+B)A(AB)=A(A+B)=0+ABA(AB)=A(A+B)=A+AB=A(1+B)=A
以上定理可以由真值表验证


2.3 逻辑代数的基本定理

2.3.1 代入定理

任何一个含有变量A的等式,如果将所以出现A的位置都用同一个逻辑函数G替换,则等式依然成立。

利用代入定理可将2.2中的公式推广到多变量的情形。

2.3.2 反演定理

若已知逻辑函数Y的逻辑式,则只要将Y中的所有“.”换为“+”,“+”换为“.”,常量“1”换为“0”,“0”换为“1”,所有原变量变成反变量,所有反变量换为原变量,得到的新函数即为原函数Y的反函数(补函数)Y’。利用摩根定理,可以求一个逻辑函数的反函数。

注意:1. 变换中必须保持先与后或的顺序;2. 对跨越两个或两个以上变量的“非号”要保留不变。

  1. 例题:已知Y=A(B+C)+C’D,求Y’.

    解1:由反演定理,
    Y = A ( B + C ) + C ′ D Y ′ = ( A ′ + B ′ C ′ ) ( C + D ′ ) = A ′ C + A ′ D ′ + B ′ C ′ C + B ′ C ′ D ′ = A ′ C + A ′ D ′ + B ′ C ′ D ′ Y=A(B+C)+C'D\\ Y'=(A'+B'C')(C+D')\\=A'C+A'D'+B'C'C+B'C'D'\\ =A'C+A'D'+B'C'D' Y=A(B+C)+CDY=(A+BC)(C+D)=AC+AD+BCC+BCD=AC+AD+BCD
    解2:根据摩根定律,直接求反,
    Y ′ = [ A ( B + C ) + C ′ D ] ′ = [ A ( B + C ) ] ′ ( C ′ D ) ′ = ( A ′ + B ′ C ′ ) ( C + D ′ ) = A ′ C + A ′ D ′ + B ′ C ′ D ′ Y'=[A(B+C)+C'D]'\\=[A(B+C)]'(C'D)'\\ =(A'+B'C')(C+D') =A'C+A'D'+B'C'D' Y=[A(B+C)+CD]=[A(B+C)](CD)=(A+BC)(C+D)=AC+AD+BCD

    2.3.3 对偶规则

    对偶式:设Y是一个逻辑函数,如果将Y中所有的或“+”换为与“.”,“.”换为“+”,“1”换为“0”,“0”换为“1”,而变量保持不变,则所得的新逻辑式Y^D为Y的对偶式

    对偶规则:如果两个函数Y和G相等,则其对偶式Y^D 和 G^D 也相等。

    利用该定理可以证明一些基本公式。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值