摘 要: 对于均匀线性天线阵列近场目标定位研究是探测领域重要难点之一。本文根据前期近场基于差 分迭代传播计算模型研究基础,提出一种新型高精度近场无源定位算法,针对均匀线性阵列近场目标空间几何 结构,突破传统菲涅尔近似近场传播模型的束缚,建立全新高精度目标关系模型并形成定位解析表达式,通过阵 列处理估计改进到达时差(TOA)定位观测量,利用新算法快速准确地获取近场多个独立同分布目标的定位信 息。仿真实验结果表明:新算法机理不同于传统近场估计分析,特别是定位解析式的引入使得位置精度提升的 同时计算量大为降低,更好地适应了近场非线性关系结构,性能分析显示TOA误差对定位估计精度的影响较为 有限,在典型信噪比条件下新算法的距离和角度估计精度优于几种常规处理算法,未来具有深入研究的价值。
关键词: 近场;菲涅尔近似;无源定位;到达时间差;差分模型
0 引 言
辐射源定位是目标探测领域的重要应用,在 雷达、地震、声学、海洋和声呐等专业有着广泛的 需求。无源定位问题按照阵列孔径、目标距离和 工作波长的关系可以分为两分支,(a)典型天线阵 列远场条件(r ≥ 2D2 /λ)和(b)天线阵列近场条件,其中 r是目标到天线阵列的距离,D 是阵列孔径,λ 是目标信号的波长。在远场条件下,波达方向 (DOA)是分析天线阵列平行波前[1] 信号传播过程, 经过多年研究目前已经取得了长足发展和大量成果。当满足近场条件(r ≥ 0.62 D3 λ)或者满足菲 涅尔区条件(0.62 D3 λ < r < 2D2 /λ)时,电波波前 不再满足平行假设,传统单要素线性 DOA 角度估计方法不再适用,但也具备了解算目标未知的可 能(同时估计目标角度和距离)。
本文针对典型近 场辐射源定位问题,通过对于距离和角度的非线 性联合分析可获得目前位置信息。 近场目标定位近些年是较为热门的问题,传 统上采用的方法有:1)经典采用多重用户分离 (MUSIC)的二维拓展算法[2] ;2)利用菲涅尔近似波 前的二阶表达式估计[3] ,在此基础上利用陶布利兹 矩阵旋转不变性,进行 ESPRIT 的 DOA 估计[4] 或高 阶累积量的 DOA 估计[5] ;3)通过菲涅尔近似的特 殊阵列结构协方差矩阵构造,可以建立角度的单 维问题,并由此通过 MUSIC 估计距离[6⁃8] ,利用 MU⁃ SIC 代价函数估计最佳值[9⁃10] ,此外基于子阵远场 估计模型,还提出一种三角函数近场逼近方法[11] 。
然而以上的方法都是通过二维要素的一维空间化 简求解过程。 不同于传统近场目标辐射传播的菲涅尔近似 模型,基于近场空间几何结构和三角函数关系推 导得到新的差分迭代模型[12] ,本文建立全新高精 度目标关系模