Android高效进阶:从数据到AI【3.2】

8.3.3 Caffe2 与 TensorFlow Lite 的对比

Caffe2 和 TensorFlow Lite 到底孰优孰劣?接下来从平台背景、开发者支持和框架成熟度层面来进行说明。

1.平台背景

TensorFlow Lite 是 Google 推出的 TensorFlow 的移动端子集,拥有 TensorFlow 大部分的运算单元和框架,是一套用于移动设备和嵌入式设备的轻量级解决方案。

Caffe2 是 Facebook 在 Caffe 的基础上推出的 AI 框架,它的主要特点是可以通过一台机器上的多个 GPU 或具有一个及多个 GPU 的多台机器来进行分布式训练,并且可以完美地应用在移动端平台上。

Google 与 Facebook 都是世界级的公司,两家公司的产品也很成熟,并且两家公司都已经将自家的框架应用到自家的产品中,但是由于 TensorFlow 的影响力更大,而 TensorFlow Lite是 TensorFlow 的子集产品,所以在模型的使用与切换上, TensorFlow Lite 具有较大的优势。

2.开发者支持

TensorFlow Lite 的安装与开发指导文档格式清晰、内容详细而准确,并且部分文档还有中文翻译版本,因此对于大部分开发者来说接入门槛较低。但是 TensorFlow 本身的 API 设计比较复杂,所以对于刚刚入门的新手来说需要花费较多的时间适应。

Caffe2 本身也有文档支持,但是文档内容比较简单,许多细节没有说得很清楚,这导致开发者在接入的时候较为困难,特别是对于已经是成熟应用的项目来说,如果想要使用 Caffe2接入业务,会遇到不小的阻力。 Caffe2 虽然也有在线的 API 文档,但是 API 文档的友好度较低,对于新手而言可能会比较困难。

3.框架成熟度

TensorFlow 在 GitHub 上的星数为 12 万多,社区较为活跃,对于很多使用过程中遇到的问题,都可以在其 GitHub 社区中找到解决方法。同时在 Stack Overflow 等社区中也有较多的关于 TensorFlow 的讨论和答案,所以如果使用 TensorFlow Lite 作为集成框架,在遇到问题的时候可以通过较多的渠道解决问题。

目前 Caffe2 的源码已经被迁移到 PyTorch 框架中,两个框架进行了合并,合并后的项目在GitHub 上的星数只有 2.9 万多。从 GitHub 的社区数据可以知道, Caffe2 的社区并不是很活跃。通过在搜索引擎中搜索与 Caffe2 相关的问题,答案与讨论都比较少,所以如果选择Caffe2 作为集成框架,开发过程中可能会遇到不少问题,需要做好心理准备。

8.4 移动 AI 业务实践

那么具体怎么进行移动 AI 业务的实践呢?下面从接入成本和模型的动态更新等方面来进行说明。

8.4.1 接入成本

TensorFlow Lite 与 Caffe2 都具有跨平台的特性,所以跨平台并不是障碍,但是在各个平台上两个框架的编译与集成方式有些区别。

由于 TensorFlow Lite 更主流,所以在下面的例子中将以 TensorFlow Lite 为例进行讲解。

在实际的接入过程中,可以发现 TensorFlow Lite 的库较大,接入过程中包体大小的压力主要来自下面两个方面。

 TensorFlow Lite 框架 AAR 包的大小。

 模型 tflite 文件的大小。

TensorFlow Lite 框架 AAR 包的大小应该为去除了 x86 等架构的 so 库之后的大小,在650KB 左右,在实际打包成发布 APK 的过程中还会进一步压缩,所以实际的接入大小应该不会超过 1MB。

在具体的业务场景下,我们开发的模型具有不同的功能,比如,图像识别、语音识别等。所以在具体的业务场景下,我们模型的 tfl

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BinaryStarXin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值