看到一篇做 SAM 医学图像分割测试的小文章,早期测试文哈哈~
论文:Accuracy of Segment-Anything Model (SAM) in Medical Image Segmentation Tasks
SAM系列篇:
【技术追踪】SAM(Segment Anything Model)代码解析与结构绘制之Image Encoder
【技术追踪】SAM(Segment Anything Model)代码解析与结构绘制之Prompt Encoder
【技术追踪】SAM(Segment Anything Model)代码解析与结构绘制之Mask Decoder
【SAM综述】医学图像分割的分割一切模型:当前应用和未来方向
【SAM导出】使用torch.onnx.export将pth格式导出为onnx格式(Pytorch代码详解)
0、摘要
SAM 是图像分割的基础模型,它使用来自 1100 万张自然图像的超过 10 亿个 mask 进行训练。该模型可以通过使用各种提示(如 masks、boxes 和 points)来执行图像的 zero-shot 分割。
本文探索了:
(1)SAM 在 12 个公开医学图像分割数据集上的准确性,这些数据集涵盖了各种器官(脑、乳房、胸部、肺、皮肤、肝、肠、胰腺和前列腺)、图像模式(2D X光、组织学、内镜、3D MRI 和 CT)和健康状况(正常、病变);
(2)SAM 是否能为医学图像分割提供有前景的研究方向;
本文发现,未经医学图像重新训练的 SAM 在准确性上不如在医学图像上训练的 U-Net 或其他深度学习模型。
Figure 1 | 本文方法概述:
1、方法
1.1、对比模型
(1)纯 U-Net 模型:U-Net、U-Net++;
(2)基于注意力的模型:Attention U-Net;
(3)基于 Transformer 的模型:UCTransNet、Trans U-Net;
1.2、数据集
(1)ACDC:MRI 心脏分割;
(2)BraTS:MRI 多模态脑肿瘤分割(瘤周水肿和肿瘤核心);
(3)BUID:超声乳腺癌分割;
(4)CIR:CT 肺结节分割;
(5)Kvasir:内镜息肉分割;
(6)Pancreas:CT 胰腺实质与肿块分割;
(7)Prostate:MRI 前列腺分割;
(8)ISIC:皮肤病变分割;
(9)LA:MRI 左心房分割;
(10)LiTS:CT 肝肿瘤分割;
(11)Hippocampus:MRI 海马体分割;
(12)Chest X-ray:肺分割;
1.3、实验设置
(1)自动提示设置:SAM 一键分割模式;
(2)single-point 提示设置:真实标签的中心点;
(3)Bounding-box 提示设置:真实标签外扩 20 个像素的矩形框;
(4)80% 训练,20% 测试,3D 图像转为 2D slices;
2、结果
Figure 2 | 在 12 个医学图像分割数据集上的 Dice:
Figure 3 | 不同提示下 U-Net 与 SAM 之间的 Dice 散点图:
自然图像和医学图像还是有壁垒的!直接用 SAM 是不行滴~