【SAM分割】医学图像分割任务中 SAM 的准确性

  看到一篇做 SAM 医学图像分割测试的小文章,早期测试文哈哈~


论文:Accuracy of Segment-Anything Model (SAM) in Medical Image Segmentation Tasks


SAM系列篇:
  【技术追踪】SAM(Segment Anything Model)代码解析与结构绘制之Image Encoder
  【技术追踪】SAM(Segment Anything Model)代码解析与结构绘制之Prompt Encoder
  【技术追踪】SAM(Segment Anything Model)代码解析与结构绘制之Mask Decoder
  【SAM综述】医学图像分割的分割一切模型:当前应用和未来方向
  【SAM导出】使用torch.onnx.export将pth格式导出为onnx格式(Pytorch代码详解)


0、摘要

  SAM 是图像分割的基础模型,它使用来自 1100 万张自然图像的超过 10 亿个 mask 进行训练。该模型可以通过使用各种提示(如 masks、boxes 和 points)来执行图像的 zero-shot 分割。

  本文探索了:
  (1)SAM 在 12 个公开医学图像分割数据集上的准确性,这些数据集涵盖了各种器官(脑、乳房、胸部、肺、皮肤、肝、肠、胰腺和前列腺)、图像模式(2D X光、组织学、内镜、3D MRI 和 CT)和健康状况(正常、病变);

  (2)SAM 是否能为医学图像分割提供有前景的研究方向;

  本文发现,未经医学图像重新训练的 SAM 在准确性上不如在医学图像上训练的 U-Net 或其他深度学习模型。

  
Figure 1 | 本文方法概述:
在这里插入图片描述

1、方法

1.1、对比模型

  (1)纯 U-Net 模型:U-Net、U-Net++;
  (2)基于注意力的模型:Attention U-Net;
  (3)基于 Transformer 的模型:UCTransNet、Trans U-Net;

1.2、数据集

  (1)ACDC:MRI 心脏分割;
  (2)BraTS:MRI 多模态脑肿瘤分割(瘤周水肿和肿瘤核心);
  (3)BUID:超声乳腺癌分割;
  (4)CIR:CT 肺结节分割;
  (5)Kvasir:内镜息肉分割;
  (6)Pancreas:CT 胰腺实质与肿块分割;
  (7)Prostate:MRI 前列腺分割;
  (8)ISIC:皮肤病变分割;
  (9)LA:MRI 左心房分割;
  (10)LiTS:CT 肝肿瘤分割;
  (11)Hippocampus:MRI 海马体分割;
  (12)Chest X-ray:肺分割;

1.3、实验设置

  (1)自动提示设置:SAM 一键分割模式;
  (2)single-point 提示设置:真实标签的中心点;
  (3)Bounding-box 提示设置:真实标签外扩 20 个像素的矩形框;
  (4)80% 训练,20% 测试,3D 图像转为 2D slices;

2、结果

  
Figure 2 | 在 12 个医学图像分割数据集上的 Dice:

在这里插入图片描述
  
Figure 3 | 不同提示下 U-Net 与 SAM 之间的 Dice 散点图:

在这里插入图片描述


  自然图像和医学图像还是有壁垒的!直接用 SAM 是不行滴~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值