本文来源公众号“集智书童”,仅用于学术分享,侵权删,干货满满。
任何部位分割模型(SAM)在自然图像的零样本提示可分割性方面表现出色。最近发布的任何部位分割模型2(SAM 2)声称在图像方面的性能优于SAM,同时将模型的能力扩展到视频分割。在一个零样本提示可分割性的医疗图像中评估最近模型的能力非常重要。在本研究中,作者对来自不同成像模式的多个数据集进行了广泛研究,以比较SAM和SAM 2之间的性能。
作者使用了两种提示策略:(i)在目标结构的核心附近使用单阳性提示,(ii)在目标结构内随机放置额外的阳性提示。
评估包括来自公开的MRI、CT和超声数据集的21种独特的器官-模态组合,包括腹部结构、心脏结构和胎儿头图像。基于2D图像的初步结果表明,尽管SAM 2在某些情况下可能表现得略好于SAM,但总体上在医学图像分割方面,SAM没有超过SAM。尤其是在CT和超声图像中,SAM 2的表现不如SAM。
对于MRI图像,SAM 2的表现与SAM相当或更好。与SAM类似,SAM 2在分割边界模糊的情况下ÿ