机器人中的数值优化|【七】线性搜索牛顿共轭梯度法、可信域牛顿共轭梯度法

机器人中的数值优化|【七】线性搜索牛顿共轭梯度法、可信域牛顿共轭梯度法 Line Search Newton-CG, Trust Region Newton-CG

往期回顾

机器人中的数值优化|【一】数值优化基础
机器人中的数值优化|【二】最速下降法,可行牛顿法的python实现,以Rosenbrock function为例
机器人中的数值优化|【三】无约束优化,拟牛顿法理论与推导
机器人中的数值优化|【四】L-BFGS理论推导与延伸
机器人中的数值优化|【五】BFGS算法非凸/非光滑处理
机器人中的数值优化|【六】线性共轭梯度法,牛顿共轭梯度法

线性搜索牛顿共轭梯度法 Line Search Newton-CG

线性搜索牛顿-CG方法,也称为截断牛顿方法。最基础的Newton step是通过求解线性系统的方程 ∇ 2 f k d k N = − ∇ f k \nabla^2 f_k d_k^N = -\nabla f_k 2fkdkN=fk来实现的。然而,CG方法是用来求解正定系统的,当 x k x_k xk不接近解时,hessian阵 ∇ 2 f k \nabla^2 f_k 2fk可能具有负特征值。因此,一旦产生了一个负曲率的方向,我们就终止了CG迭代。
在这里插入图片描述

可信域牛顿共轭梯度法 Trust Region Newton Conjugate Gradient Method

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值