1.3 函数的极限

🙌作者简介:数学与计算机科学学院出身、在职高校高等数学专任教师,分享学习经验、生活、 努力成为像代码一样有逻辑的人!
🌙个人主页:阿芒的主页
⭐ 高等数学专栏介绍:本专栏系统地梳理高等数学这门课的知识点,参考书主要为经典的同济版第七版《高等数学》以及作者在高校使用的《高等数学》系统教材。梳理《高等数学》这门课,旨在帮助那些刚刚接触这门课的小白以及需要系统复习这门课的考研人士。希望自己的一些经验能够帮助更多的人。

数列 { x n } \{x_{n}\} {xn} 可看作自变量为 n n n 的函数: x n = f ( n ) , n ∈ N + x_{n}=f(n),n\in \bm N_{+} xn=f(n)nN+. 把数列极限概念中的函数为 f ( n ) f(n) f(n) 而自变量的变化过程为 n ⟶ ∞ n \longrightarrow \infty n 等特殊性撇开,这样就引出函数极限的一般概念.

自变量趋于有限值时函数的极限

  1. 描述性定义

设函数 f ( x ) f(x) f(x) 在点 x 0 x_{0} x0 的某去心邻域内有定义,若存在常数 A A A, 使得当 x x x 无限接近 x 0 x_{0} x0 时, f ( x ) f(x) f(x) 无限接近 A A A,则称常数 A A A 为函数 f ( x ) f(x) f(x) x ⟶ x 0 x \longrightarrow x_{0} xx0极限,记为
lim ⁡ x → x 0   f ( x ) = A       或         f ( x ) ⟶ A ( x → x 0 ) \begin{align} \lim_{x \rightarrow x_{0}}~ f(x)=A~~~~~~或 ~~~~~~~~f(x) \longrightarrow A (x \rightarrow x_{0})\nonumber \end{align} xx0lim f(x)=A              f(x)Axx0

  1. ε − δ \varepsilon-\delta εδ 定义

设函数 y = f ( x ) y=f(x) y=f(x) x 0 x_{0} x0 的某一去心邻域 U ˚ ( x 0 ) \mathring {U} (x_{0}) U˚(x0) 内有定义,如果存在常数 A A A . 对于任意的正数 ε \varepsilon ε (无论它多么小), 总存在 δ > 0 \delta >0 δ>0 , 使得对于适合不等式 0 < ∣ x − x 0 ∣ < δ 0<|x-x_{0}|< \delta 0<xx0<δ 的一切 x x x 所对应的函数值 f ( x ) f(x) f(x) 都满足不等式
∣ f ( x ) − A ∣ < ε \begin{align} |f(x)-A|<\varepsilon \nonumber \end{align} f(x)A<ε
那么常数 A A A 就叫做函数 f ( x ) f(x) f(x) x ⟶ x 0 x \longrightarrow x_{0} xx0 时的极限,记为
lim ⁡ x → x 0   f ( x ) = A       或         f ( x ) ⟶ A ( x → x 0 ) \begin{align} \lim_{x \rightarrow x_{0}}~ f(x)=A~~~~~~或 ~~~~~~~~f(x) \longrightarrow A (x \rightarrow x_{0})\nonumber \end{align} xx0lim f(x)=A              f(x)Axx0
如果这样的常数不存在,则称当 x ⟶ x 0 x \longrightarrow x_{0} xx0 时函数 y = f ( x ) y=f(x) y=f(x)极限不存在.


自变量趋于无穷大时函数的极限

  1. 描述性定义

设函数 f ( x ) f(x) f(x) R R R 上有定义,若存在常数 A A A, 使得当 ∣ x ∣ |x| x 无限增大时, f ( x ) f(x) f(x) 无限接近 A A A,则称常数 A A A 为函数 f ( x ) f(x) f(x) x ⟶ ∞ x \longrightarrow \infty x极限,记为
lim ⁡ x → ∞   f ( x ) = A       或         f ( x ) ⟶ A ( x → ∞ ) \begin{align} \lim_{x \rightarrow \infty}~ f(x)=A~~~~~~或 ~~~~~~~~f(x) \longrightarrow A (x \rightarrow \infty)\nonumber \end{align} xlim f(x)=A              f(x)Ax

:同样有 lim ⁡ x → + ∞   f ( x ) = A \lim_{x \rightarrow +\infty}~ f(x)=A limx+ f(x)=A lim ⁡ x → − ∞   f ( x ) = A \lim_{x \rightarrow -\infty}~ f(x)=A limx f(x)=A. 可仿照写出.

  1. ε − N \varepsilon-N εN 定义

设函数 y = f ( x ) y=f(x) y=f(x) ∣ x ∣ ≥ a |x|\geq a xa 时有定义, A A A 为常数. 若对 ∀ ε > 0 \forall \varepsilon>0 ε>0, ∃ X > 0 \exists X>0 X>0 ( X > a X>a X>a), 当 ∣ x ∣ > X |x|>X x>X 时,有
∣ f ( x ) − A ∣ < ε \begin{align} |f(x)-A|<\varepsilon \nonumber \end{align} f(x)A<ε
恒成立,则称常数 A A A 为函数 y = f ( x ) y=f(x) y=f(x) x ⟶ ∞ x \longrightarrow \infty x极限,记为
lim ⁡ x → ∞   f ( x ) = A       或         f ( x ) ⟶ A ( x → ∞ ) \begin{align} \lim_{x \rightarrow \infty}~ f(x)=A~~~~~~或 ~~~~~~~~f(x) \longrightarrow A (x \rightarrow \infty)\nonumber \end{align} xlim f(x)=A              f(x)Ax

:同样有 lim ⁡ x → + ∞   f ( x ) = A \lim_{x \rightarrow +\infty}~ f(x)=A limx+ f(x)=A lim ⁡ x → − ∞   f ( x ) = A \lim_{x \rightarrow -\infty}~ f(x)=A limx f(x)=A ε − N \varepsilon-N εN 定义:

lim ⁡ x → + ∞   f ( x ) = A \lim_{x \rightarrow +\infty}~ f(x)=A limx+ f(x)=A 的定义
设函数 y = f ( x ) y=f(x) y=f(x) [ a , + ∞ ) [a,+\infty) [a,+) 上有定义, A A A 为常数. 若对任意的正数 ε \varepsilon ε, 总存在 X > 0 X>0 X>0 ( X > a X>a X>a),使得当 x x x满足不等式 x > X x>X x>X 时,有
∣ f ( x ) − A ∣ < ε \begin{align} |f(x)-A|<\varepsilon \nonumber \end{align} f(x)A<ε
恒成立,则称常数 A A A 为函数 y = f ( x ) y=f(x) y=f(x) x ⟶ + ∞ x \longrightarrow +\infty x+ 时的极限,记为
lim ⁡ x → + ∞   f ( x ) = A       或         f ( x ) ⟶ A ( x → + ∞ ) \begin{align} \lim_{x \rightarrow +\infty}~ f(x)=A~~~~~~或 ~~~~~~~~f(x) \longrightarrow A (x \rightarrow +\infty)\nonumber \end{align} x+lim f(x)=A              f(x)Ax+
如果这样的常数不存在,则称当 x ⟶ + ∞ x \longrightarrow +\infty x+ 时函数 y = f ( x ) y=f(x) y=f(x)极限不存在.

lim ⁡ x → − ∞   f ( x ) = A \lim_{x \rightarrow -\infty}~ f(x)=A limx f(x)=A 的定义

设函数 y = f ( x ) y=f(x) y=f(x) ( − ∞ , a ] (-\infty,a] a] 上有定义, A A A 为常数. 若对任意的正数 ε \varepsilon ε, 总存在 X > 0 X>0 X>0 ( − X < a -X<a X<a),使得当 x x x满足不等式 x < − X x<-X x<X 时,有
∣ f ( x ) − A ∣ < ε \begin{align} |f(x)-A|<\varepsilon \nonumber \end{align} f(x)A<ε
恒成立,则称常数 A A A 为函数 y = f ( x ) y=f(x) y=f(x) x ⟶ − ∞ x \longrightarrow -\infty x 时的极限,记为
lim ⁡ x → − ∞   f ( x ) = A       或         f ( x ) ⟶ A ( x → − ∞ ) \begin{align} \lim_{x \rightarrow -\infty}~ f(x)=A~~~~~~或 ~~~~~~~~f(x) \longrightarrow A (x \rightarrow -\infty)\nonumber \end{align} xlim f(x)=A              f(x)Ax

说明 ① 定义中 ε \varepsilon ε 具有任意性.
        ~~~~~~~         ② 定义中 x > X x>X x>X 指的是大于 X X X 的所有实数 x x x .

  1. 极限存在定理

lim ⁡ x → ∞   f ( x ) = A \lim_{x \rightarrow \infty}~ f(x)=A limx f(x)=A 的充分必要条件是 lim ⁡ x → − ∞   f ( x ) = A \lim_{x \rightarrow -\infty}~ f(x)=A limx f(x)=A lim ⁡ x → + ∞   f ( x ) = A \lim_{x \rightarrow +\infty}~ f(x)=A limx+ f(x)=A


单侧极限

  1. 右极限定义

y = f ( x ) y=f(x) y=f(x) x 0 x_{0} x0 的右邻域 ( x 0 , x 0 + δ ) (x_{0},x_{0}+\delta) (x0x0+δ) 内有定义,如果存在常数 A A A . 对于任意 ∀ ε \forall\varepsilon ε , ∃   δ > 0 \exists ~\delta >0  δ>0 , 使得对于适合不等式 x 0 < x < x 0 + δ x_{0}<x<x_{0}+ \delta x0<x<x0+δ 的一切 x x x 所对应的函数值 f ( x ) f(x) f(x) 都满足不等式
∣ f ( x ) − A ∣ < ε \begin{align} |f(x)-A|<\varepsilon \nonumber \end{align} f(x)A<ε
那么常数 A A A 就叫做函数 f ( x ) f(x) f(x) x ⟶ x 0 x \longrightarrow x_{0} xx0 时的右极限,记为
lim ⁡ x → x 0 +   f ( x ) = A       或         f ( x 0 + 0 ) = A \begin{align} \lim_{x \rightarrow x^{+}_{0}}~ f(x)=A~~~~~~或 ~~~~~~~~f(x_{0}+0) =A \nonumber \end{align} xx0+lim f(x)=A              f(x0+0)=A

  1. 左极限定义

y = f ( x ) y=f(x) y=f(x) x 0 x_{0} x0 的左邻域 ( x 0 − δ , x 0 ) (x_{0}-\delta,x_{0}) (x0δx0) 内有定义,如果存在常数 A A A . 对于任意 ∀ ε \forall\varepsilon ε , ∃   δ > 0 \exists ~\delta >0  δ>0 , 使得对于适合不等式 x 0 − δ < x < x 0 x_{0}-\delta<x<x_{0} x0δ<x<x0 的一切 x x x 所对应的函数值 f ( x ) f(x) f(x) 都满足不等式
∣ f ( x ) − A ∣ < ε \begin{align} |f(x)-A|<\varepsilon \nonumber \end{align} f(x)A<ε
那么常数 A A A 就叫做函数 f ( x ) f(x) f(x) x ⟶ x 0 x \longrightarrow x_{0} xx0 时的左极限,记为
lim ⁡ x → x 0 −   f ( x ) = A       或         f ( x 0 − 0 ) = A \begin{align} \lim_{x \rightarrow x^{-}_{0}}~ f(x)=A~~~~~~或 ~~~~~~~~f(x_{0}-0) =A \nonumber \end{align} xx0lim f(x)=A              f(x00)=A

左极限和右极限统称为单侧极限.

  1. 极限存在定理

lim ⁡ x → x 0   f ( x ) = A \lim_{x \rightarrow x_{0}}~ f(x)=A limxx0 f(x)=A 成立的充分必要条件是 lim ⁡ x → x 0 − f ( x ) = A \lim_{x \rightarrow x^{-}_{0}} f(x)=A limxx0f(x)=A = lim ⁡ x → x 0 + f ( x ) = A \lim_{x \rightarrow x^{+}_{0}} f(x)=A limxx0+f(x)=A


函数极限的性质

上面讨论了函数 y = f ( x ) y=f(x) y=f(x) 在自变量 x ⟶ + ∞ x \longrightarrow+\infty x+, x ⟶ − ∞ x \longrightarrow-\infty x, x ⟶ ∞ x \longrightarrow\infty x, x ⟶ x 0 x \longrightarrow x_{0} xx0, x ⟶ x 0 + x \longrightarrow x^{+}_{0} xx0+, x ⟶ x 0 − x \longrightarrow x^{-}_{0} xx0 这六种变化过程中相应函数 f ( x ) f(x) f(x) 的极限情况. 本文仅以自变量 x ⟶ x 0 x \longrightarrow x_{0} xx0 的情形讨论性质,自变量的其他情形只需要做出相应的修改即可.

  1. 函数极限的唯一性

如果 lim ⁡ x ⟶ x 0 f ( x ) \lim_{x \longrightarrow x_{0}}f(x) limxx0f(x) 存在, 则极限唯一.

  1. 函数极限的局部有界性

如果极限 lim ⁡ x ⟶ x 0 f ( x ) \lim_{x \longrightarrow x_{0}}f(x) limxx0f(x) 存在, 则在点 x 0 x_{0} x0 某个去心邻域 U ˚ ( x 0 , δ ) \mathring {U} (x_{0},\delta) U˚(x0,δ) 内,函数 f ( x ) f(x) f(x) 有界,即存在正数 δ \delta δ M M M,使得当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_{0}|< \delta 0<xx0<δ 时,有 ∣ f ( x ) ∣ ≤ M |f(x)|\leq M f(x)M .

  1. 函数极限的局部保号性

如果极限 lim ⁡ x ⟶ x 0 f ( x ) = A \lim_{x \longrightarrow x_{0}}f(x)=A limxx0f(x)=A , 且 A > 0 A>0 A>0 (或 A < 0 A<0 A<0), 则存在正数 δ \delta δ, 使得当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_{0}|< \delta 0<xx0<δ 时,有 f ( x ) > 0 f(x)>0 f(x)>0 (或 f ( x ) < 0 f(x)<0 f(x)<0).

推论1: 如果 lim ⁡ x ⟶ x 0 f ( x ) = A \lim_{x \longrightarrow x_{0}}f(x)=A limxx0f(x)=A, 且存在正数 δ \delta δ, 当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_{0}|< \delta 0<xx0<δ 时有 f ( x ) ≥ 0 f(x)\geq0 f(x)0 (或 f ( x ) ≤ 0 f(x)\leq0 f(x)0), 则 A ≥ 0 A\geq0 A0 (或 A ≤ 0 A\leq0 A0).

推论2: 如果 lim ⁡ x ⟶ x 0 f ( x ) = A \lim_{x \longrightarrow x_{0}}f(x)=A limxx0f(x)=A, 且存在正数 δ \delta δ, 当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_{0}|< \delta 0<xx0<δ 时有 f ( x ) > 0 f(x)>0 f(x)>0 (或 f ( x ) < 0 f(x)<0 f(x)<0), 则 A ≥ 0 A\geq0 A0 (或 A ≤ 0 A\leq0 A0


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是阿芒阿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值