迪利克雷卷积,莫比乌斯反演,杜教筛

常见积性函数

  • μ ( n ) = { 1 , i = 1 0 , n 无 2 次 方 以 上 的 素 因 数 ( − 1 ) k , k 为 不 同 素 因 数 的 种 类 \mu(n)=\begin{cases} 1,&i=1\\ 0,&n无2次方以上的素因数\\ (-1)^k,&k为不同素因数的种类 \end{cases} μ(n)=1,0,(1)k,i=1n2k
  • φ ( n ) = ∑ i = 1 n [ ( n , i ) = 1 ] \varphi(n)=\sum_{i=1}^{n}[(n,i)=1] φ(n)=i=1n[(n,i)=1]
  • d ( n ) = ∑ d = 1 n [ d ∣ n ] d(n)=\sum_{d=1}^{n}[d|n] d(n)=d=1n[dn]
  • σ ( n ) = ∑ d ∣ n d = ∑ d = 1 n [ d ∣ n ] ⋅ d \sigma(n)=\sum_{d|n}d=\sum_{d=1}^{n}[d|n]\cdot d σ(n)=dnd=d=1n[dn]d
  • ϵ ( n ) = [ n = 1 ] \epsilon(n)=[n=1] ϵ(n)=[n=1]
  • I ( n ) = 1 I(n)=1 I(n)=1
  • i d ( n ) = n id(n)=n id(n)=n

迪利克雷卷积

  • 定义:两个数论函数 f f f g g g的卷积为 ( f ∗ g ) ( n ) = ∑ d ∣ n f ( d ) ⋅ g ( n d ) (f*g)(n)=\sum_{d|n}f(d) \cdot g(\frac{n}{d}) (fg)(n)=dnf(d)g(dn)
  • 交换律: f ∗ g = g ∗ f f*g=g*f fg=gf
  • 结合律: ( f ∗ g ) ∗ h = f ∗ ( g ∗ h ) (f*g)*h=f*(g*h)\quad (fg)h=f(gh)所以 f f f k k k次卷积可以用类似快速幂的方式
  • 分配律: ( f + g ) ∗ h = f ∗ h + g ∗ h (f+g)*h=f*h+g*h (f+g)h=fh+gh
  • f , g f,g f,g为积性函数,则 f ∗ g f*g fg为积性函数
  • f , g f,g f,g为积性函数, n = ∏ i = 1 m p i α i n=\prod_{i=1}^{m}p_i^{\alpha_i} n=i=1mpiαi,则 f ∗ g   ( n ) = ∏ i = 1 m f ∗ g   ( p i α i ) f*g\,(n)=\prod_{i=1}^{m}f*g\,(p_i^{\alpha_i}) fg(n)=i=1mfg(piαi) 证明

常用公式

  • ∑ d ∣ n μ ( d ) = [ n = 1 ] \sum_{d|n}\mu(d)=[n=1] dnμ(d)=[n=1]
  • ∑ d ∣ n φ ( d ) = n \sum_{d|n}\varphi(d)=n dnφ(d)=n
  • ∑ i = 1 n i [ ( i , n ) = 1 ] = φ ( n ) n 2 n > 1 ( g c d ( i , n ) = 1 ⟺ g c d ( n − i , n ) = 1 , 所 以 两 两 配 对 和 等 于 n ) \sum_{i=1}^{n}i[(i,n)=1]=\frac{\varphi(n)n}{2}\quad n>1\quad(gcd(i,n)=1\Longleftrightarrow gcd(n-i,n)=1,所以两两配对和等于n) i=1ni[(i,n)=1]=2φ(n)nn>1(gcd(i,n)=1gcd(ni,n)=1,n) 证明
  • ϵ ∗ f = f \epsilon*f=f ϵf=f
  • I ∗ μ = ϵ ⟺ [ n = 1 ] = ∑ d ∣ n μ ( d ) I*\mu=\epsilon\Longleftrightarrow[n=1]=\sum_{d|n}\mu(d) Iμ=ϵ[n=1]=dnμ(d)
  • φ ∗ I = i d ⟺ ∑ d ∣ n φ ( d ) = n \varphi*I=id\Longleftrightarrow\sum_{d|n}\varphi(d)=n φI=iddnφ(d)=n
  • μ ∗ i d = φ ⟺ ∑ d ∣ n n d ⋅ μ ( d ) \mu*id=\varphi\Longleftrightarrow\sum_{d|n}\frac{n}{d}\cdot\mu(d) μid=φdndnμ(d)
  • φ ( x n ) = x n − 1 φ ( x ) \varphi(x^n)=x^{n-1}\varphi(x) φ(xn)=xn1φ(x)
  • d ( n ⋅ m ) = ∑ i ∣ n ∑ j ∣ m [ ( i , j ) = 1 ] d(n\cdot m)=\sum_{i|n}\sum_{j|m}[(i,j)=1] d(nm)=injm[(i,j)=1]

莫比乌斯反演

  • 定理 F ( n ) F(n) F(n) f ( n ) f(n) f(n)是定义在非负整数集合上的两个函数,并且满足条件:
    F ( n ) = ∑ d ∣ n f ( d ) F(n)=\sum_{d|n}f(d) F(n)=dnf(d)
    那么存在一个结论:
    f ( n ) = ∑ d ∣ n μ ( d ) F ( n d ) f(n)=\sum_{d|n}\mu(d)F(\frac{n}{d}) f(n)=dnμ(d)F(dn)
    这个定理就称作莫比乌斯反演定理。
  • 证明1
    ∑ d ∣ n μ ( d ) F ( n d ) = ∑ d ∣ n μ ( d ) ∑ i ∣ n d f ( i ) = ∑ i ∣ n f ( i ) ∑ d ∣ n i μ ( d ) = f ( n ) \begin{aligned} \sum_{d|n}\mu(d)F(\frac{n}{d})&=\sum_{d|n}\mu(d)\sum_{i|\frac{n}{d}}f(i) \\ &=\sum_{i|n}f(i)\sum_{d|\frac{n}{i}}\mu(d)\\ &=f(n) \end{aligned} dnμ(d)F(dn)=dnμ(d)idnf(i)=inf(i)dinμ(d)=f(n)
  • 证明2
    F = f ∗ I F ∗ μ = f ∗ I ∗ μ F ∗ μ = f ∗ ϵ F ∗ μ = f \begin{aligned} F&=f*I\\ F*\mu&=f*I*\mu\\ F*\mu&=f*\epsilon\\ F*\mu&=f \end{aligned} FFμFμFμ=fI=fIμ=fϵ=f
    定理

    F ( n ) = ∑ n ∣ d f ( d ) F(n)=\sum_{n|d}f(d) F(n)=ndf(d)
    则有
    f ( n ) = ∑ n ∣ d μ ( d n ) F ( d ) f(n)=\sum_{n|d}\mu(\frac{d}{n})F(d) f(n)=ndμ(nd)F(d)
    证明
    ∑ n ∣ d μ ( d n ) F ( d ) = ∑ n ∣ d μ ( d n ) ∑ d ∣ e f ( e ) = ∑ n ∣ e ∑ d ∣ e n μ ( d ) f ( e ) = ∑ n ∣ e f ( e ) [ e n = 1 ] = f ( n ) \begin{aligned} &\sum_{n|d}\mu(\frac{d}{n})F(d)\\ =&\sum_{n|d}\mu(\frac{d}{n})\sum_{d|e}f(e)\\ =&\sum_{n|e}\sum_{d|\frac{e}{n}}\mu(d)f(e)\\ =&\sum_{n|e}f(e)[\frac{e}{n}=1]\\ =&f(n) \end{aligned} ====ndμ(nd)F(d)ndμ(nd)def(e)nedneμ(d)f(e)nef(e)[ne=1]f(n)
    杜教筛
  • ∑ i = 1 n f ( i ) = S ( n ) \sum_{i=1}^{n}f(i)=S(n) i=1nf(i)=S(n)
  • 构造两个积性函数 h h h g g g,使得 h = f ∗ g h=f*g h=fg
    ∑ i = 1 n h ( i ) = ∑ i = 1 n ∑ d ∣ i g ( d ) ⋅ f ( i d ) = ∑ d = 1 n g ( d ) ⋅ ∑ i = 1 ⌊ n d ⌋ f ( i ) ∑ i = 1 n h ( i ) = ∑ d = 1 n g ( d ) ⋅ S ( ⌊ n d ⌋ ) \begin{aligned} \sum_{i=1}^{n}h(i)&=\sum_{i=1}^{n}\sum_{d|i}g(d)\cdot f(\frac{i}{d})\\ &=\sum_{d=1}^{n}g(d)\cdot\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}f({i})\\ \sum_{i=1}^{n}h(i)&=\sum_{d=1}^{n}g(d)\cdot S(\lfloor\frac{n}{d}\rfloor) \end{aligned} i=1nh(i)i=1nh(i)=i=1ndig(d)f(di)=d=1ng(d)i=1dnf(i)=d=1ng(d)S(dn)
    接着,我们将右边式子的第一项给提出来,可以得到:
    ∑ i = 1 n h ( i ) = g ( 1 ) ⋅ S ( n ) + ∑ d = 2 n g ( d ) ⋅ S ( ⌊ n d ⌋ ) g ( 1 ) S ( n ) = ∑ i = 1 n h ( i ) − ∑ d = 2 n g ( d ) ⋅ S ( ⌊ n d ⌋ ) \begin{aligned} \sum_{i=1}^{n}h(i)&=g(1)\cdot S(n)+\sum_{d=2}^{n}g(d)\cdot S(\lfloor\frac{n}{d}\rfloor)\\ g(1)S(n)&=\sum_{i=1}^{n}h(i)-\sum_{d=2}^{n}g(d)\cdot S(\lfloor\frac{n}{d}\rfloor) \end{aligned} i=1nh(i)g(1)S(n)=g(1)S(n)+d=2ng(d)S(dn)=i=1nh(i)d=2ng(d)S(dn)
    线性筛预处理 1 0 7 10^7 107 的前缀和
    h h h g g g时把卷积形式写出来观察。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值