Pytorch查看网络各层的输入维度[调试技巧]

本文介绍了在Pytorch中查看神经网络各层输入维度的调试技巧,通过使用spyder的变量管理器,在前向传播过程中跟踪输入维度,特别是在多层封装的函数中理解调用流程。具体操作包括在特定步骤“单步进入”函数,观察变量管理器中的Tensor属性,以确定如Yolov3第一层输入的batch、channel和尺寸等信息。
摘要由CSDN通过智能技术生成

Pytorch查看网络各层的输入维度[调试技巧]

情景:python的函数经过多层封装,比如pytorch的函数,我们需要理解他的调用过程,这时候可以上网查一下
例:获取Pytorch::nn.Module的输入的维度信息(即神经网络每层输入的维度关系)
forward方法的具体流程:
这里参考了这篇博文https://www.cnblogs.com/llfctt/p/10967651.html
以一个Module为例:

  1. 调用module的call方法
  2. module的call里面调用module的forward方法
  3. forward里面如果碰到Module的子类,回到第1步,如果碰到的是Function的子类,继续往下
  4. 调用Function的call方法
  5. Function的call方法调用了Function的forward方法。
  6. Function的forward返回值
  7. module的forward返回值
  8. 在module的call进行forward_hook操作,然后返回值。

具体操作

本图调用model,进行前向传播,"单步进入"该函数
在这里插入图片描述
然后我们进入了module的call方法,然后我们在下图光标指示位置再次"单步进入"这个函数
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值