relu、dropout layer、pooling、卷积、全连接、filter、参数strides、ksize的含义

relu:其属于非线性激活函数的一种,同类型的函数还有sigmoid函数,tanh函数,softplus函数等等。对于ReLU函数,其公式即为个ReLU(x)=max(0, x),而sigmoid函数为sigmoid(x)= 1/(1+e^-x),而Softplus(x)=log(1+ex)。
在这里插入图片描述ReLU与softplus函数与前图中的传统sigmoid系激活函数相比,主要变化有三点:①单侧抑制 ②相对宽阔的兴奋边界 ③稀疏激活性(重点,可以看到红框里前端状态完全没有激活)。标准的sigmoid函数输出不具备稀疏性,需要用一些惩罚因子来训练出一大堆接近0的冗余数据来,从而产生稀疏数据,例如L1、L1/L2或Student-t作惩罚因子。因此需要进行无监督的预训练。
而ReLU是线性修正,是purelin的折线版。它的作用是如果计算出的值小于0,就让它等于0,否则保持原来的值不变。这是一种简单粗暴地强制某些数据为0的方法,然而经实践证明,训练后的网络完全具备适度的稀疏性。而且训练后的可视化效果和传统方式预训练出的效果很相似,这也说明了ReLU具备引导适度稀疏的能力。
因此,ReLu的使用,使得网络可以自行引入稀疏性,同时大大地提高了训练速度。下面贴出一些不同函数下的训练结果对比数据在这里插入图片描述 对于线性函数而言,ReLU的表达能力更强,尤其体现在深度网络中;而对于非线性函数而言,ReLU由于非负区间的梯度为常数,因此不存在梯度消失问题(Vanishing Gradient Problem),使得模型的收敛速度维持在一个稳定状态。这里稍微描述一下什么是梯度消失问题:当梯度小于1时,预测值与真实值之间的误差每传播一层会衰减一次,如果在深层模型中使用sigmoid作为激活函数,这种现象尤为明显,将导致模型收敛停滞不前。
当训练一个深度分类模型的时候,和目标相关的特征往往也就那么几个,因此通过ReLU实现稀疏后的模型能够更好地挖掘相关特征,拟合训练数据。正因为有了这单侧抑制,才使得神经网络中的神经元也具有了稀疏激活性。尤其体现在深度神经网络模型(如CNN)中,当模型增加N层之后,理论上ReLU神经元的激活率将降低2的N次方倍。

不用simgoid和tanh作为激活函数,而用ReLU作为激活函数的原因是:加速收敛。因为sigmoid和tanh都是饱和(saturating)的。何为饱和?可理解为把这两者的函数曲线和导数曲线plot出来:他们的导数都是倒过来的碗状,也就是越接近目标,对应的导数越小。而ReLu的导数对于大于0的部分恒为1。于是ReLU确实可以在BP的时候能够将梯度很好地传到较前面的网络。

一般情况下,使用ReLU会比较好
1、使用 ReLU,就要注意设置 learning rate,不要让网络训练过程中出现很多 “dead” 神经元;
2、如果“dead”无法解决,可以尝试 Leaky ReLU、PReLU 、RReLU等Relu变体来替代ReLU;
3、不建议使用 sigmoid,如果一定要使用,也可以用 tanh来替代。

dropout layer

 首先,想象我们现在只训练一个特定的网络,当迭代次数增多的时候,可能出现网络对训练集拟合的很好(在训练集上loss很小),但是对验证集的拟合程度很差的情况。所以,我们有了这样的想法:可不可以让每次跌代随机的去更新网络参数(weights),引入这样的随机性就可以增加网络generalize 的能力。所以就有了dropout 。
 
在训练的时候,我们只需要按一定的概率(retaining probability)p 来对weight layer 的参数进行随机采样,将这个子网络作为此次更新的目标网络。可以想象,如果整个网络有n个参数,那么我们可用的子网络个数为 2^n 。 并且,当n很大时,每次迭代更新 使用的子网络基本上不会重复,从而避免了某一个网络被过分的拟合到训练集上。
那么测试的时候怎么办呢? 一种最naive的方法是,我们把 2^n 个子网络都用来做测试,然后以某种 voting 机制将所有结果结合一下(比如说平均一下下),然后得到最终的结果。但是,由于n实在是太大了,这种方法实际中完全不可行!

在这里插入图片描述

  1. Dropout简介
    1.1 Dropout出现的原因
    在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象。在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高;但是在测试数据上损失函数比较大,预测准确率较低。
    过拟合是很多机器学习的通病。如果模型过拟合,那么得到的模型几乎不能用。为了解决过拟合问题,一般会采用模型集成的方法,即训练多个模型进行组合。此时,训练模型费时就成为一个很大的问题,不仅训练多个模型费时,测试多个模型也是很费时。
    综上所述,训练深度神经网络的时候,总是会遇到两大缺点:
    (1)容易过拟合
    (2)费时
    Dropout可以比较有效的缓解过拟合的发生,在一定程度上达到正则化的效果。

1.2 什么是Dropout
在2012年,Hinton在其论文《Improving neural networks by preventing co-adaptation of feature detectors》中提出Dropout。当一个复杂的前馈神经网络被训练在小的数据集时,容易造成过拟合。为了防止过拟合,可以通过阻止特征检测器的共同作用来提高神经网络的性能。
在2012年,Alex、Hinton在其论文《ImageNet Classification with Deep Convolutional Neural Networks》中用到了Dropout算法,用于防止过拟合。并且,这篇论文提到的AlexNet网络模型引爆了神经网络应用热潮,并赢得了2012年图像识别大赛冠军,使得CNN成为图像分类上的核心算法模型。
随后,又有一些关于Dropout的文章《Dropout:A Simple Way to Prevent Neural Networks from Overfitting》、《Improving Neural Networks with Dropout》、《Dropout as data augmentation》。
从上面的论文中,我们能感受到Dropout在深度学习中的重要性。那么,到底什么是Dropout呢?
Dropout可以作为训练深度神经网络的一种trick供选择。在每个训练批次中,通过忽略一半的特征检测器(让一半的隐层节点值为0),可以明显地减少过拟合现象。这种方式可以减少特征检测器(隐层节点)间的相互作用,检测器相互作用是指某些检测器依赖其他检测器才能发挥作用。

Dropout说的简单一点就是:我们在前向传播的时候,让某个神经元的激活值以一定的概率p停止工作,这样可以使模型泛化性更强,因为它不会太依赖某些局部的特征,如图1所示。
在这里插入图片描述
2.1 Dropout具体工作流程
假设我们要训练这样一个神经网络,如图所示。
在这里插入图片描述
输入是x输出是y,正常的流程是:我们首先把x通过网络前向传播,然后把误差反向传播以决定如何更新参数让网络进行学习。使用Dropout之后,过程变成如下:
(1)首先随机(临时)删掉网络中一半的隐藏神经元,输入输出神经元保持不变(图3中虚线为部分临时被删除的神经元)
在这里插入图片描述
(2) 然后把输入x通过修改后的网络前向传播,然后把得到的损失结果通过修改的网络反向传播。一小批训练样本执行完这个过程后,在没有被删除的神经元上按照随机梯度下降法更新对应的参数(w,b)。、
(3)然后继续重复这一过程:
. 恢复被删掉的神经元(此时被删除的神经元保持原样,而没有被删除的神经元已经有所更新)
. 从隐藏层神经元中随机选择一个一半大小的子集临时删除掉(备份被删除神经元的参数)。
. 对一小批训练样本,先前向传播然后反向传播损失并根据随机梯度下降法更新参数(w,b) (没有被删除的那一部分参数得到更新,删除的神经元参数保持被删除前的结果)。
不断重复这一过程。

2.2 Dropout在神经网络中的使用
Dropout的具体工作流程上面已经详细的介绍过了,但是具体怎么让某些神经元以一定的概率停止工作(就是被删除掉)?代码层面如何实现呢?
下面,我们具体讲解一下Dropout代码层面的一些公式推导及代码实现思路。

(1)在训练模型阶段
dn.net/program_developer/article/details/80737724
在这里插入图片描述
上面公式中Bernoulli函数是为了生成概率r向量,也就是随机生成一个0、1的向量。

代码层面实现让某个神经元以概率p停止工作,其实就是让它的激活函数值以概率p变为0。比如我们某一层网络神经元的个数为1000个,其激活函数输出值为y1、y2、y3、…、y1000,我们dropout比率选择0.4,那么这一层神经元经过dropout后,1000个神经元中会有大约400个的值被置为0。

注意: 经过上面屏蔽掉某些神经元,使其激活值为0以后,我们还需要对向量y1……y1000进行缩放,也就是乘以1/(1-p)。如果你在训练的时候,经过置0后,没有对y1……y1000进行缩放(rescale),那么在测试的时候,就需要对权重进行缩放,操作如下。在这里插入图片描述
为什么说Dropout可以解决过拟合?
(1)取平均的作用: 先回到标准的模型即没有dropout,我们用相同的训练数据去训练5个不同的神经网络,一般会得到5个不同的结果,此时我们可以采用 “5个结果取均值”或者“多数取胜的投票策略”去决定最终结果。例如3个网络判断结果为数字9,那么很有可能真正的结果就是数字9,其它两个网络给出了错误结果。这种“综合起来取平均”的策略通常可以有效防止过拟合问题。因为不同的网络可能产生不同的过拟合,取平均则有可能让一些“相反的”拟合互相抵消。dropout掉不同的隐藏神经元就类似在训练不同的网络,随机删掉一半隐藏神经元导致网络结构已经不同,整个dropout过程就相当于对很多个不同的神经网络取平均。而不同的网络产生不同的过拟合,一些互为“反向”的拟合相互抵消就可以达到整体上减少过拟合。

(2)减少神经元之间复杂的共适应关系: 因为dropout程序导致两个神经元不一定每次都在一个dropout网络中出现。这样权值的更新不再依赖于有固定关系的隐含节点的共同作用,阻止了某些特征仅仅在其它特定特征下才有效果的情况 。迫使网络去学习更加鲁棒的特征 ,这些特征在其它的神经元的随机子集中也存在。换句话说假如我们的神经网络是在做出某种预测,它不应该对一些特定的线索片段太过敏感,即使丢失特定的线索,它也应该可以从众多其它线索中学习一些共同的特征。从这个角度看dropout就有点像L1,L2正则,减少权重使得网络对丢失特定神经元连接的鲁棒性提高。

dropout函数的实现下面展示一些 内联代码片

# coding:utf-8
import numpy as np
 
# dropout函数的实现
def dropout(x, level):
    if level < 0. or level >= 1: #level是概率值,必须在0~1之间
        raise ValueError('Dropout level must be in interval [0, 1[.')
    retain_prob = 1. - level
 
    # 我们通过binomial函数,生成与x一样的维数向量。binomial函数就像抛硬币一样,我们可以把每个神经元当做抛硬币一样
    # 硬币 正面的概率为p,n表示每个神经元试验的次数
    # 因为我们每个神经元只需要抛一次就可以了所以n=1,size参数是我们有多少个硬币。
    random_tensor = np.random.binomial(n=1, p=retain_prob, size=x.shape) #即将生成一个01分布的向量,0表示这个神经元被屏蔽,不工作了,也就是dropout了
    print(random_tensor)
 
    x *= random_tensor
    print(x)
    x /= retain_prob
 
    return x
 
#对dropout的测试,大家可以跑一下上面的函数,了解一个输入x向量,经过dropout的结果  
x=np.asarray([1,2,3,4,5,6,7,8,9,10],dtype=np.float32)
dropout(x,0.4)

函数中,x是本层网络的激活值。Level就是dropout就是每个神经元要被丢弃的概率。
注意: Keras中Dropout的实现,是屏蔽掉某些神经元,使其激活值为0以后,对激活值向量x1……x1000进行放大,也就是乘以1/(1-p)。
思考:上面我们介绍了两种方法进行Dropout的缩放,那么Dropout为什么需要进行缩放呢?
因为我们训练的时候会随机的丢弃一些神经元,但是预测的时候就没办法随机丢弃了。如果丢弃一些神经元,这会带来结果不稳定的问题,也就是给定一个测试数据,有时候输出a有时候输出b,结果不稳定,这是实际系统不能接受的,用户可能认为模型预测不准。那么一种”补偿“的方案就是每个神经元的权重都乘以一个p,这样在“总体上”使得测试数据和训练数据是大致一样的。比如一个神经元的输出是x,那么在训练的时候它有p的概率参与训练,(1-p)的概率丢弃,那么它输出的期望是px+(1-p)0=px。因此测试的时候把这个神经元的权重乘以p可以得到同样的期望。

总结:
当前Dropout被大量利用于全连接网络,而且一般认为设置为0.5或者0.3,而在卷积网络隐藏层中由于卷积自身的稀疏化以及稀疏化的ReLu函数的大量使用等原因,Dropout策略在卷积网络隐藏层中使用较少。总体而言,Dropout是一个超参,需要根据具体的网络、具体的应用领域进行尝试。
原文链接:https://blog.csdn.net/program_developer/article/details/80737724

pooling layer

在这里插入图片描述常见的的池化层有最大池化(max pooling)和平均池化(average pooling):
作用
通过池化层可以减少空间信息的大小,也就提高了运算效率;减少空间信息也就意味着减少参数,这也降低了overfit的风险;
获得空间变换不变性(translation rotation scale invarance,平移旋转缩放的不变性);
下面展示了不变性的例子,下面的例子摘抄于网上,不具有普适性,大家理解思想就好:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述一些网络不用pooling的原因是想学习关于位置的信息.在这里插入图片描述从上面左图可以看到,使用了pool操作其实就是降低图片的空间尺寸。右图使用一个 2 × 2的 池化核(filter),以2为步长(stride),对图片进行max pooling,那么会图片就会尺寸就会减小一半。需要注意,这里是因为 stride = 2,所以图片尺寸才会减少一半的
为什么可以降低图片空间尺寸呢?
为什么要降低图片的空间尺寸呢?
这两个问题,其实是触及了池化技术的本质:在尽可能保留图片空间信息的前提下,降低图片的尺寸,增大卷积核感受野,提取高层特征,同时减少网络参数量,预防过拟合。为什么要降低图片的尺寸?
我们知道在卷积神经网络中,如果特征抽取后最终输出特征图尺寸太大,将会导致输出结果的特征太多,计算量剧增的同时,将其输入到一个分类器(通常是全连接层Full Connected layer),很容易就会导致过拟合。就像机器学习一样,特征过多的话,我们可能会考虑降维(如PCA)来减少特征,增强拟合能力。
简单来说:降低尺寸,有助于减少计算量以及特征数量,保留主要特征,增大卷积核感受野,防止过拟合。
但我们在做卷积的时候,让conv 层的步长stride = 2同样也可以起到降低尺寸的目的啊,为什么需要pooling 层来降低尺寸,这就回到了上文的:池化层不需要保留参数。它采用一个固定的函数进行像素运算,如max pooling filter中采用了max函数,是不需要保留参数的,所以减少了网络的参数量。
增大感受野是怎么回事,我们知道在实际训练中,我们的卷积核一般就是比较小的,如3 * 3,这些卷积核本质就是在特征图上进行滤波窗口计算并滑动。如果要保持卷积核大小不变,同时增大卷积核覆盖区域(感受野增大,便于提取高层语义),那么就可以对图片尺寸进行下采样。
当然增大感受野也有其他方式,如膨胀卷积运算,在保证特征图尺寸不变的情况下,可以增大卷积核的感受野。
不过值得一提的是:在像素信息较为敏感的一些视觉任务中(如分割,检测),一般是较少使用pooling操作来下采样的,通常使用插值(如双线性插值等)或者stride=2的卷积层来进行下采样,尽可能的保留像素信息,这也是pooling操作的缺点,不过使用pooling也有其优点,就有无参数的好处。

卷积

边界宽度是一个经验值,加上zero pad这一项是为了使输入图像和卷积后的特征图具有相同的维度,如:

pading

输入为553,filter为333,在zero pad 为1,则加上zero pad后的输入图像为773,则卷积后的特征图大小为551((7-3)/1+1),与输入图像一样;

filter

在这里插入图片描述
输入图像是32323,3是它的深度(即R、G、B),卷积层是一个553的filter(感受野),这里注意:感受野的深度必须和输入图像的深度相同。通过一个filter与输入图像的卷积可以得到一个28281的特征图,上图是用了两个filter得到了两个特征图;

我们通常会使用多层卷积层来得到更深层次的特征图。如下:
在这里插入图片描述在这里插入图片描述
输入图像和filter的对应位置元素相乘再求和,最后再加上b,得到特征图。如图中所示,filter w0的第一层深度和输入图像的蓝色方框中对应元素相乘再求和得到0,其他两个深度得到2,0,则有0+2+0+1=3即图中右边特征图的第一个元素3.,卷积过后输入图像的蓝色方框再滑动,stride(步长)=2,如下:
如上图,完成卷积,得到一个331的特征图;在这里还要注意一点,即zero pad项,即为图像加上一个边界,边界元素均为0.(对原输入无影响)一般有

F=3 => zero pad with 1
F=5 => zero pad with 2
F=7=> zero pad with 3,边界宽度是一个经验值,加上zero pad这一项是为了使输入图像和卷积后的特征图具有相同的维度,如:

输入为553,filter为333,在zero pad 为1,则加上zero pad后的输入图像为773,则卷积后的特征图大小为551((7-3)/1+1),与输入图像一样;
而关于特征图的大小计算方法具体如下:
在这里插入图片描述在这里插入图片描述
卷积层还有一个特性就是“权值共享”原则。如下图:
如没有这个原则,则特征图由10个32321的特征图组成,即每个特征图上有1024个神经元,每个神经元对应输入图像上一块553的区域,即一个神经元和输入图像的这块区域有75个连接,即75个权值参数,则共有75102410=768000个权值参数,这是非常复杂的,因此卷积神经网络引入“权值”共享原则,即一个特征图上每个神经元对应的75个权值参数被每个神经元共享,这样则只需75*10=750个权值参数,而每个特征图的阈值也共享,即需要10个阈值,则总共需要750+10=760个参数。

所谓的权值共享就是说,给一张输入图片,用一个filter去扫这张图,filter里面的数就叫权重,这张图每个位置就是被同样的filter扫的,所以权重是一样的,也就是共享。

原文链接:https://blog.csdn.net/yjl9122/article/details/70198357

在这里插入图片描述在这里插入图片描述在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

位沁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值