【CVPR 2025】CVPR2025 医学图像分割有关paper list 总结

1.UniverSeg: Universal Medical Image Segmentation

 2.EffiDec3D: An Optimized Decoder for High-Performance and Efficient 3D Medical Image Segmentation

3.Incomplete Multi-modal Brain Tumor Segmentation via Learnable Sorting State Space Model

4.Test-Time Domain Generalization via Universe Learning: A Multi-Graph Matching Approach for Medical Image Segmentation

5.VISTA3D: A Unified Segmentation Foundation Model For 3D Medical Imaging

6.Annotation Ambiguity Aware Semi-Supervised Medical Image Segmentation

7.Advancing Generalizable Tumor Segmentation with Anomaly-Aware Open-Vocabulary Attention Maps and Frozen Foundation Diffusion Models

8.Revisiting MAE pre-training for 3D medical image segmentation

 9.nnWNet: Rethinking the Use of Transformers in Biomedical Image Segmentation and Calling for a Unified Evaluation Benchmark

10.CSC-PA: Cross-image Semantic Correlation via Prototype Attentions for Single-network Semi-supervised Breast Tumor Segmentation

11.Boost the Inference with Co-training: A Depth-guided Mutual Learning Framework for Semi-supervised Medical Polyp Segmentation

12.DyCON: Dynamic Uncertainty-aware Consistency and Contrastive Learning for Semi-supervised Medical Image Segmentation

13.A Semantic Knowledge Complementarity based Decoupling Framework for Semi-supervised Classimbalanced Medical Image Segmentation

14.Noise-Consistent Siamese-Diffusion for Medical Image Synthesis and Segmentation

15.Steady Progress Beats Stagnation: Mutual Aid of Foundation and Conventional Models in Mixed Domain Semi-Supervised Medical Image Segmentation

16.SuperLightNet: Lightweight Parameter Aggregation Network for Multimodal Brain Tumor Segmentation

17.Nonlinear Interpolation and Differentiated Training Strategies for Semi-Supervised Medical Image Segmentation

18.vesselFM: A Foundation Model for Universal 3D Blood Vessel Segmentation

19.Cross-Modal Interactive Perception Network with Mamba for Lung Tumor Segmentation in PET-CT Images

20.Interactive Medical Image Segmentation: A Benchmark Dataset and Baseline

21.Enhancing SAM with Efficient Prompting and Preference Optimization for Semi-supervised Medical Image Segmentation

 

22.Show and Segment: Universal Medical Image Segmentation via In-Context Learning

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI_Med

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值