1.UniverSeg: Universal Medical Image Segmentation
2.EffiDec3D: An Optimized Decoder for High-Performance and Efficient 3D Medical Image Segmentation
3.Incomplete Multi-modal Brain Tumor Segmentation via Learnable Sorting State Space Model
4.Test-Time Domain Generalization via Universe Learning: A Multi-Graph Matching Approach for Medical Image Segmentation
5.VISTA3D: A Unified Segmentation Foundation Model For 3D Medical Imaging
6.Annotation Ambiguity Aware Semi-Supervised Medical Image Segmentation
7.Advancing Generalizable Tumor Segmentation with Anomaly-Aware Open-Vocabulary Attention Maps and Frozen Foundation Diffusion Models
8.Revisiting MAE pre-training for 3D medical image segmentation
9.nnWNet: Rethinking the Use of Transformers in Biomedical Image Segmentation and Calling for a Unified Evaluation Benchmark
10.CSC-PA: Cross-image Semantic Correlation via Prototype Attentions for Single-network Semi-supervised Breast Tumor Segmentation
11.Boost the Inference with Co-training: A Depth-guided Mutual Learning Framework for Semi-supervised Medical Polyp Segmentation
12.DyCON: Dynamic Uncertainty-aware Consistency and Contrastive Learning for Semi-supervised Medical Image Segmentation
13.A Semantic Knowledge Complementarity based Decoupling Framework for Semi-supervised Classimbalanced Medical Image Segmentation
14.Noise-Consistent Siamese-Diffusion for Medical Image Synthesis and Segmentation
15.Steady Progress Beats Stagnation: Mutual Aid of Foundation and Conventional Models in Mixed Domain Semi-Supervised Medical Image Segmentation
16.SuperLightNet: Lightweight Parameter Aggregation Network for Multimodal Brain Tumor Segmentation
17.Nonlinear Interpolation and Differentiated Training Strategies for Semi-Supervised Medical Image Segmentation
18.vesselFM: A Foundation Model for Universal 3D Blood Vessel Segmentation
19.Cross-Modal Interactive Perception Network with Mamba for Lung Tumor Segmentation in PET-CT Images
20.Interactive Medical Image Segmentation: A Benchmark Dataset and Baseline
21.Enhancing SAM with Efficient Prompting and Preference Optimization for Semi-supervised Medical Image Segmentation
22.Show and Segment: Universal Medical Image Segmentation via In-Context Learning