【CVPR 2025】CVPR2025 医学图像分割有关paper list 总结

1.UniverSeg: Universal Medical Image Segmentation

 2.EffiDec3D: An Optimized Decoder for High-Performance and Efficient 3D Medical Image Segmentation

3.Incomplete Multi-modal Brain Tumor Segmentation via Learnable Sorting State Space Model

4.Test-Time Domain Generalization via Universe Learning: A Multi-Graph Matching Approach for Medical Image Segmentation

5.VISTA3D: A Unified Segmentation Foundation Model For 3D Medical Imaging

6.Annotation Ambiguity Aware Semi-Supervised Medical Image Segmentation

7.Advancing Generalizable Tumor Segmentation with Anomaly-Aware Open-Vocabulary Attention Maps and Frozen Foundation Diffusion Models

8.Revisiting MAE pre-training for 3D medical image segmentation

 9.nnWNet: Rethinking the Use of Transformers in Biomedical Image Segmentation and Calling for a Unified Evaluation Benchmark

10.CSC-PA: Cross-image Semantic Correlation via Prototype Attentions for Single-network Semi-supervised Breast Tumor Segmentation

11.Boost the Inference with Co-training: A Depth-guided Mutual Learning Framework for Semi-supervised Medical Polyp Segmentation

12.DyCON: Dynamic Uncertainty-aware Consistency and Contrastive Learning for Semi-supervised Medical Image Segmentation

13.A Semantic Knowledge Complementarity based Decoupling Framework for Semi-supervised Classimbalanced Medical Image Segmentation

14.Noise-Consistent Siamese-Diffusion for Medical Image Synthesis and Segmentation

15.Steady Progress Beats Stagnation: Mutual Aid of Foundation and Conventional Models in Mixed Domain Semi-Supervised Medical Image Segmentation

16.SuperLightNet: Lightweight Parameter Aggregation Network for Multimodal Brain Tumor Segmentation

17.Nonlinear Interpolation and Differentiated Training Strategies for Semi-Supervised Medical Image Segmentation

18.vesselFM: A Foundation Model for Universal 3D Blood Vessel Segmentation

19.Cross-Modal Interactive Perception Network with Mamba for Lung Tumor Segmentation in PET-CT Images

20.Interactive Medical Image Segmentation: A Benchmark Dataset and Baseline

21.Enhancing SAM with Efficient Prompting and Preference Optimization for Semi-supervised Medical Image Segmentation

 

22.Show and Segment: Universal Medical Image Segmentation via In-Context Learning

### CVPR Conference Brain Tumor Image Segmentation Research Papers In the context of medical image segmentation, particularly focusing on brain tumors, recent advancements have been highlighted in various studies presented at conferences like CVPR. One notable paper discusses an innovative approach called Context-Prior Learning aimed towards universal medical image segmentation[^1]. This method emphasizes learning from contextual information to improve segmentation accuracy across different types of medical images. For specific contributions related to brain tumor segmentation within the CVPR 2024 accepted papers list, one can explore titles that explicitly mention terms such as "brain," "tumor," or "glioma" along with keywords like "segmentation"[^2]. To find relevant publications: - Review abstracts and full texts available through official channels provided by CVPR. - Utilize search functionalities on platforms hosting these documents using targeted queries combining domain-specific terminology (e.g., "brain tumor") and technical aspects ("image segmentation"). ```python import requests from bs4 import BeautifulSoup url = 'https://cvpr.thecvf.com/Conferences/2024/AcceptedPapers' response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') papers = [] for link in soup.find_all('a'): title = link.get_text() if 'brain' in title.lower() and ('tumor' in title.lower() or 'glioma' in title.lower()): papers.append(title) print(papers) ``` This script demonstrates how to programmatically extract potentially relevant paper titles from the CVPR 2024 accepted papers page based on keyword matching.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI_Med

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值