推荐算法-多目标学习总结

本文总结了多目标学习在推荐系统中的应用,包括loss加权融合、共享底层结构、MOE、MMOE和ESMM等模型。多任务学习能通过参数共享、任务互助和隐式数据增强提升模型性能,解决样本选择偏差和训练数据稀疏问题。同时,介绍了PLE模型以解决任务优化间的跷跷板问题,通过定制门控和分层萃取提升表征能力。这些方法在实际业务中能够优化多目标优化并提高模型的泛化能力。
摘要由CSDN通过智能技术生成

推荐算法-多目标学习总结

mutil-task learning,本质上是用一个模型完成多个任务的建模、在推荐系统中,多任务学习一般即指多目标学习(multi-label learning),不同目标输入相同的feature进行联合训练,是迁移学习的一种。他们之间的关系如图:
在这里插入图片描述

q1:为什么要用多目标学习?
1、很多业界推荐业务,天然就是多目标建模场景,需要多目标共同优化。
2、工程便利。一般推荐系统中排序模块延时需求在40ms左右,如果分别对每个任务单独训练一个模型,难以满足需求。
q2:为什么多任务学习有效?
当把业务独立建模变成多任务联合建模之后,有可能带来四种结果:
在这里插入图片描述

多任务学习的优势在于通过部分参数共享,联合训练,能在保证“还不错”的前提下,实现多目标共同提升。原因有以下几种:
● 任务互助:对于某个任务难学到的特征,可通过其他任务学习
● 隐式数据增强:不同任务有不同的噪声,一起学习可抵消部分噪声
● 学到通用表达,提高泛化能力:模型学到的是对所有任务都偏好的权重,有助于推广到未来的新任务
● 正则化:对于一个任务而言,其他任务的学习对该任务有正则化效果
多任务学习主要研究:网络结构设计(哪些参数共享、在什么位置共享、如何共享)、多loss优化策略(每个目标都对应一个loss,继而引起loss数值有大有小,学习速度有快有慢,更新方向时而相反)

多目标类别
1、loss 加权融合
在这里插入图片描述

优点:
● 模型简单,仅在训练时通过梯度乘以样本权重实现对其它目标的加权
● 模型上线简单,和base完全相同,不需要额外开销
缺点:
● 本质上并不是多目标建模,而是将不同的目标转化为同一个目标。样本的加权权重需要根据AB测试才能确定。
2、shared-bottom 底层共享结构
在这里插入图片描述

优点:
● 浅层参数共享,互相补充学习,任务相关性越高,模型loss优化效果越明显,也可以加速训练。
缺点:
● 任务不相关甚至优化目标相反时(例如新闻的点击与阅读时长),可能会带来负收益,多个任务性能一起下降。
3、多任务学习-MOE
在这里插入图片描述

4、多任务学习-MMOE(mutil gate mixture-of experts)
在这里插入图片描述

MMOE 是MOE的改进,相较于MOE的结构中所有任务共享一个门控网络,MMOE的结构优化为每个任务都单独使用一个门控网络。这样的改进使模型更容易捕捉到子任务间的相关性。

5、多任务学习-ESMM(Entire Space Multi-Task Model)
ESMM是针对任务依赖而提出,比如电商推荐中的多目标预估经常是ctr和cvr,其中转换这个行为只有在点击发生后才会发生。
在这里插入图片描述
在这里插入图片描述

优点与拓展:
1、ESMM首创了利用用户行为序列数据在完整样本空间建模,并提出利用学习CTR和CTCVR的辅助任务,迂回学习CVR,避免了传统CVR模型经常遭遇的样本选择偏差和训练数据稀疏的问题,取得了显著的效果。
2、论文中子任务的Tower网络是MLP,我们可以很容易将其替换为其他学习模型,方便拓展
3、可以在loss中引入动态加权的学习机制
4、也可以对更长的序列依赖进行建模

6、PLE
PLE(Progressive Layered Extraction)模型由腾讯PCG团队在2020年提出,主要为了解决跷跷板问题,该论文获得了RecSys’2020的最佳长论文(Best Lone Paper Award)。
PLE在网络设计上有两大改进:
1、CGC(Customized Gate Control) 定制门控
在这里插入图片描述

任务A有ma个expert,任务B有mb个expert,另外还有ms个任务A、B共享的Expert。这样对Expert做一个显式的分割,可以让task-specific expert只受自己任务梯度的影响,不会受到其他任务的干扰(每个任务保底有一个独立的网络模型),而只有task-shared expert才受多个任务的混合梯度影响。
2、PLE (progressive layered extraction) 分层萃取
PLE就是上述CGC网络的多层纵向叠加,以获得更加丰富的表征能力。在分层的机制下,Gate设计成两种类型,使得不同类型Expert信息融合交互。task-share gate融合所有Expert信息,task-specific gate只融合specific expert和share expert。模型结构如图:
在这里插入图片描述

参考:https://datawhalechina.github.io/fun-rec/#/ch02/ch2.2/ch2.2.5/2.2.5.0
https://zhuanlan.zhihu.com/p/291406172

  • 9
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值