RobustScaler的计算方法/原理 (举例解释)

文章介绍了四分位距(IQR)的概念,它是构建箱形图和分析数据分布的重要工具。在对称分布的数据中,IQR与中位数差有特定关系。文中通过一个例子解释了如何计算IQR,特别是在训练集长度不满足直接计算条件时的近似方法,并提到了特征缩放的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
四分位距通常是用来构建箱形图,以及对概率分布的简要图表概述。对一个对称性分布数据(其中位数必然等于第三四分位数与第一四分位数的算术平均数),二分之一的四分差等于绝对中位差(MAD)。中位数是集中趋势的反映。 [1]
公式:IQR = Q3 − Q1

光说不练空把式
来看一个官网的例子🌰 链接: link

在这里插入图片描述
每列的特征中位值不难理解 [1,1,2]
但是scale(The (scaled) interquartile range for each feature in the training set.) 为什么是 [3,1.5,2.5]呢
其实是因为官网例子给的training set 长度为3,因此没法直接算四分位距。但我们可以根据公式近似:
以第一列为例:
第一列样本为[1, -2, 4]
IQR =(4 - (-2)) * 3/4 - (4 - (-2)) * 1/4 = 3
以上就是本期的全部内容,如果你看到这里,别忘了关注点赞

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值