Dropout正则化

        Dropout是 Srivastava 等人在 2014 年发表的一篇论文中,提出了一种针对神经网络模型的正则化方法Dropout A Simple Way to Prevent Neural Networks from Overfitting)。
        Dropout的实现方法:Dropout正确的做法是在训练的过程中按照一定的比例(比例参数可设置)随即忽略一些或者屏蔽一些神经元。这些神经元会被随机抛弃,也即是说他们在正向传播中对于下游的神经元贡献效果暂时消失了;反向传播时该神经元也不会有更新更新;所以,通过传播过程,Dropout将产生和L2范数相同的收缩效果;
        
        
        随着神经网络模型的不断学习,神经元的权值会与整个网络的上下文相 匹配。神经元的权重针对某些特征进行调优,进而产生一些特殊化。周围的神经元则会依赖于这种特殊化,但如果过于特殊化,模型会因为对训练数据的过拟合而变得脆弱不堪。神经元在训练过程中的这种依赖于上下文的现象 被称为复杂的协同适应;
        
加入了 Dropout 以后,输入的特征都是有可能会被随机清除的,所以该 神经元不会再特别依赖于任何一个输入特征,也就是说不会给任何一个输入 设置太大的权重。由于网络模型对神经元特定的权重不那么敏感。这反过来又提升了模型的泛化能力,不容易对训练数据过拟合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值