模糊数学 1、模糊集、隶属度函数、如何确定隶属度函数

------------------------2021.3.14更新------------------------------

        一个关于模糊和概率的趣味小问题 模糊?还是概率?两杯水,一杯模糊有毒,一杯概率有毒,你必须选一杯喝下去,你选哪一杯?

------------------------2021.3.14更新------------------------------

        

------------------------2020.8.17更新------------------------------

模糊数学视频链接:https://pan.baidu.com/s/1_JBbmzcaiG8M1ZZ9TfZb8g
提取码:46z7
------------------------2020.8.17更新------------------------------

总算学完了,这懒病改改改了,放一下所有的笔记链接

模糊数学 1、模糊集、隶属度函数、如何确定隶属度函数
模糊数学 2、基本的一些模糊矩阵,以及模糊矩阵的运算
模糊数学 3、模糊聚类
模糊数学 4、模糊模式识别
模糊数学 5、模糊综合评判

        集合的概念:一些具有相同特征的不同对象构成的全体,也称集或者经典集合。
        经典集合的特征函数(和模糊集的隶属度函数一样):
                                                 f ( x ) = { 1 x ∈ A 0 x ∉ A f(x) = \left\{ \begin{array}{l} 1\quad x \in A \\ 0\quad x \notin A \\ \end{array} \right. f(x)={1xA0x/A

        一个经典集合A,它的特征函数为f(),那么怎么判断一个新的对象x是不是属于这个集合呢,计算f(x)是0还是1,是1代表属于A,是0代表不属于。

        与之对应的是模糊集合,假设A是一个模糊集合,它的隶属度函数是 μ A ( ⋅ ) \mu _A ( \cdot ) μA() ,那么一个新的对象x属于A的程度就是 μ A ( x ) \mu _A (x) μA(x)(是一个0到1之间的数)。隶属度函数的构造极为重要,一般根据这个模糊集的性质相关。一般也把A的隶属度函数写成 A ( ⋅ ) A( \cdot ) A()

        接下来是模糊集的表示方法,共三种:扎德表示法,序偶表示法,向量表示法。假设论域 U = { x 1 , x 2 , ⋅ ⋅ ⋅ , x n } U = \left\{ {x_1 ,x_2 , \cdot \cdot \cdot ,x_n } \right\} U={x1,x2,,xn},模糊集为A, A ( x ) A(x) A(x)是x的隶属度, A ( ⋅ ) A( \cdot ) A()是隶属度函数。

在这里插入图片描述
        扎德表示法容易与加法混淆。序偶表示法与向量表示法的含义都一样,向量表示法更简洁,所以我们一般就只用向量表示法。

        比如上面公式的意思就是每个对象 x i x_i xi属于模糊集合A的程度(隶属度)

        接下来讲一讲隶属度函数的确定。一般用指派法。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
        这三张图基本涵盖了偏大型、偏小型和居中型,我们的模糊集是什么样的,去选择相应的隶属度函数就好了。一句话——凭经验指定。

        整个模糊集的定义,什么是隶属度函数,怎么为一个模糊集选一个合适的隶属度函数就讲完了。

        1、模糊集与经典集合对应,就是说一个对象无法精确的定义,既属于这样有属于那样,这种对象构成集合就是模糊集

        2、隶属度函数,用来刻画一个对象隶属于某种定义的程度,比如说,食人花 0.7 的的程度属于植物,这个0.7 就是所谓的隶属度。

### 三角形隶属度函数在模糊控制系统中的应用 #### 隶属度函数定义及其重要性 在模糊逻辑系统中,隶属度函数用于描述输入变量如何映射到特定的模糊集合上。对于三角形隶属度函数而言,该函数通过三个点来定义一个线性的梯形区域,通常表示为\( \mu(x;a,b,c) \),其中 \(a\) 是左端点,\(b\) 是顶点位置,而 \(c\) 则代表右端点[^1]。 #### 实现方式 当应用于PLC编程环境时,如西门子TIA Portal (博途), 可以利用内置的功能块(Function Block, FB) 来创建自定义的三角形隶属度函数。这些功能块能够接收来自传感器或其他数据源的实际测量值作为输入,并将其转换成相应的隶属度等级输出给后续处理单元使用[^3]。 以下是基于CODESYS ST语言编写的简单示例代码片段展示了一个典型的三角形隶属度函数: ```pascal FUNCTION_BLOCK TriangleMembershipFunction VAR_INPUT x : REAL; (* 输入变量 *) END_VAR VAR_OUTPUT mu : REAL; (* 输出隶属度 *) END_VAR VAR a : REAL := -2.0; b : REAL := 0.0; c : REAL := 2.0; END_VAR IF x <= a THEN mu := 0.0; ELSIF x >= c THEN mu := 0.0; ELSE IF x < b THEN mu := (x - a)/(b - a); ELSE mu := -(x - c)/(c - b); END_IF; END_IF; ``` 此段程序实现了基本的三角形隶属度曲线构建过程,可以根据具体应用场景调整参数`a`, `b`, 和 `c` 的取值范围以适应不同的需求。 #### 参数配置与优化 为了提高模糊控制器的表现效果,在设计过程中还需要考虑两个重要因素:“量化因子”和“比例因子”。前者决定了原始信号被缩放的程度;后者则影响着最终决策权重分配的比例关系。合理设定这两个系数有助于改善系统的响应速度和平稳程度。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

中南自动化学院至渝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值