核化线性降维(KPCA)的理解

1、为什么要提出核化线性降维(KPCA)?

答:PCA只能解决数据分布是线性的情况(数据大致分布在一个超平面附近),对于数据分布情况是非线性的有心无力
在这里插入图片描述
可以看到,假如数据分布是图(a)的样子,利用PCA得到的图(c)就是杂乱无章的,与他本真的结构差别比较大。
为了解决这个问题,提出了KPCA

2、KPCA的思想是什么?

答:你不是说数据分布不再是线性的了吗,那我就想到了,当初支持向量机也是遇到过这个问题,他是怎么解决的呢?他把数据映射到高维空间去,在高维空间这些数据就是线性的了。好的,那我也有想法,PCA 不是只能处理线性分布的数据吗,那我把这个非线性的数据映射到高维去不就变成线性分布的了吗。我再用 PCA 来处理映射后的高维数据,

好的,到这儿 KPCA 的思想就全部浮现了,把原始的非线性的数据映射到高维空间变成线性的,然后用 PCA 来处理映射后的高维数据。

在 PCA 里面有 x x T w = λ w ⇒ ( ∑ i = 1 m x i x i T ) w = λ w \mathbf{x}{{\mathbf{x}}^{\text{T}}}\mathbf{w}=\lambda \mathbf{w}\Rightarrow \left( \sum\limits_{i=1}^{m}{{{x}_{i}}}x_{i}^{\text{T}} \right)\mathbf{w}=\lambda \mathbf{w} xxTw=λw(i=1mxixiT)w=λw,然后选前d(这个由你自己指定)个大的特征值对应的特征向量组成变换矩阵。

那么在KPCA里面有 Z Z T W = λ W ⇒ ( ∑ i = 1 m z i z i T ) W = λ W Z{{Z}^{\text{T}}}\mathbf{W}=\lambda \mathbf{W}\Rightarrow \left( \sum\limits_{i=1}^{m}{{{z}_{i}}}z_{i}^{\text{T}} \right)\mathbf{W}=\lambda \mathbf{W} ZZTW=λW(i=1mziziT)W=λW ,Z是样本x映射到高维空间的像, z = ϕ ( x ) z=\phi (x) z=ϕ(x)
Z Z T W = ϕ ( X ) ϕ ( X ) T W Z{{Z}^{\text{T}}}\mathbf{W}=\phi (X)\phi {{(X)}^ {\text{T}}}\mathbf{W} ZZTW=ϕ(X)ϕ(X)TW,然后我们都知道映射函数不好求嘛,那么我们引入了核函数 K = ϕ ( X ) ϕ ( X ) T K=\phi (X)\phi {{(X)}^{\text{T}}} K=ϕ(X)ϕ(X)T,则可以推出 ⇒ K W = λ W \Rightarrow K\mathbf{W}=\lambda \mathbf{W} KW=λW,那么我们取K最大的d个的特征值对应的特征向量组成变换矩阵,不就可以了

核主元分析KPCA降维特征提取以及故障检测应用-KPCA_v2.zip 本帖最后由 iqiukp 于 2018-11-9 15:02 编辑      核主元分析(Kernel principal component analysis ,KPCA)在降维、特征提取以及故障检测中的应用。主要功能有:(1)训练数据和测试数据的非线性主元提取(降维、特征提取) (2)SPE和T2统计量及其控制限的计算 (3)故障检测 参考文献: Lee J M, Yoo C K, Choi S W, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical engineering science, 2004, 59: 223-234. 1. KPCA的建模过程(故障检测): (1)获取训练数据(工业过程数据需要进行标准化处理) (2)计算核矩阵 (3)核矩阵中心化 (4)特征值分解 (5)特征向量的标准化处理 (6)主元个数的选取 (7)计算非线性主成分(即降维结果或者特征提取结果) (8)SPE和T2统计量的控制限计算 function model = kpca_train % DESCRIPTION % Kernel principal component analysis % %       mappedX = kpca_train % % INPUT %   X            Training samples %                N: number of samples %                d: number of features %   options      Parameters setting % % OUTPUT %   model        KPCA model % % % Created on 9th November, 2018, by Kepeng Qiu. % number of training samples L = size; % Compute the kernel matrix K = computeKM; % Centralize the kernel matrix unit = ones/L; K_c = K-unit*K-K*unit unit*K*unit; % Solve the eigenvalue problem [V,D] = eigs; lambda = diag; % Normalize the eigenvalue V_s = V ./ sqrt'; % Compute the numbers of principal component % Extract the nonlinear component if options.type == 1 % fault detection     dims = find) >= 0.85,1, 'first'); else     dims = options.dims; end mappedX  = K_c* V_s ; % Store the results model.mappedX =  mappedX ; model.V_s = V_s; model.lambda = lambda; model.K_c = K_c; model.L = L; model.dims = dims; model.X = X; model.K = K; model.unit = unit; model.sigma = options.sigma; % Compute the threshold model.beta = options.beta;% corresponding probabilities [SPE_limit,T2_limit] = comtupeLimit; model.SPE_limit = SPE_limit; model.T2_limit = T2_limit; end复制代码2. KPCA的测试过程: (1)获取测试数据(工业过程数据需要利用训练数据的均值和标准差进行标准化处理) (2)计算核矩阵 (3)核矩阵中心化 (4)计算非线性主成分(即降维结果或者特征提取结果) (5)SPE和T2统计量的计算 function [SPE,T2,mappedY] = kpca_test % DESCRIPTION % Compute the T2 statistic, SPE statistic,and the nonlinear component of Y % %       [SPE,T2,mappedY] = kpca_test % % INPUT %   model       KPCA model %   Y           test data % % OUTPUT %   SPE         the SPE statistic %   T2          the T2 statistic %   mappedY     the nonlinear component of Y % % Created on 9th November, 2018, by Kepeng Qiu. % Compute Hotelling's T2 statistic % T2 = diag)*model.mappedX'); % the number of test samples L = size; % Compute the kernel matrix Kt = computeKM; % Centralize the kernel matrix unit = ones/model.L; Kt_c = Kt-unit*model.K-Kt*model.unit unit*model.K*model.unit; % Extract the nonlinear component mappedY = Kt_c*model.V_s; % Compute Hotelling's T2 statistic T2 = diag)*mappedY'); % Compute the squared prediction error SPE = sum.^2,2)-sum; end复制代码 3. demo1: 降维、特征提取 源代码 % Demo1: dimensionality reduction or feature extraction % ---------------------------------------------------------------------% clc clear all close all addpath) % 4 circles load circledata % X = circledata; for i = 1:4     scatter:250*i,1),X:250*i,2))     hold on end % Parameters setting options.sigma = 5;   % kernel width options.dims  = 2;   % output dimension options.type  = 0;   % 0:dimensionality reduction or feature extraction                      % 1:fault detection options.beta  = 0.9; % corresponding probabilities options.cpc  = 0.85; % Principal contribution rate % Train KPCA model model = kpca_train; figure for i = 1:4     scatter:250*i,1), ...         model.mappedX:250*i,2))     hold on end 复制代码(2)结果 (分别为原图和特征提取后的图) demo1-1.png demo1-2.png 4. demo2: 故障检测(需要调节核宽度、主元贡献率和置信度等参数来提高故障检测效果) (1)源代码 % Demo2: Fault detection % X: training samples % Y: test samples % Improve the performance of fault detection by adjusting parameters % 1. options.sigma = 16;   % kernel width % 2. options.beta          % corresponding probabilities % 3. options.cpc  ;        % principal contribution rate % ---------------------------------------------------------------------% clc clear all close all addpath) % X = rand; Y = rand; Y = rand 3; Y = rand*3; % Normalization % mu = mean; % st = std; % X = zscore; % Y = bsxfun,st); % Parameters setting options.sigma = 16;   % kernel width options.dims  = 2;   % output dimension options.type  = 1;   % 0:dimensionality reduction or feature extraction                      % 1:fault detection options.beta  = 0.9; % corresponding probabilities options.cpc  = 0.85; % principal contribution rate % Train KPCA model model = kpca_train; % Test a new sample Y [SPE,T2,mappedY] = kpca_test; % Plot the result plotResult; plotResult; 复制代码(2)结果(分别是SPE统计量和T2统计量的结果图) demo2-1.png demo2-2.png    附件是基于KPCA降维、特征提取和故障检测程序源代码。如有错误的地方请指出,谢谢。 Kernel Principal Component Analysis .zip KPCA
核主元分析KPCA降维特征提取以及故障检测应用-Kernel Principal Component Analysis .zip 本帖最后由 iqiukp 于 2018-11-9 15:02 编辑      核主元分析(Kernel principal component analysis ,KPCA)在降维、特征提取以及故障检测中的应用。主要功能有:(1)训练数据和测试数据的非线性主元提取(降维、特征提取) (2)SPE和T2统计量及其控制限的计算 (3)故障检测 参考文献: Lee J M, Yoo C K, Choi S W, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical engineering science, 2004, 59: 223-234. 1. KPCA的建模过程(故障检测): (1)获取训练数据(工业过程数据需要进行标准化处理) (2)计算核矩阵 (3)核矩阵中心化 (4)特征值分解 (5)特征向量的标准化处理 (6)主元个数的选取 (7)计算非线性主成分(即降维结果或者特征提取结果) (8)SPE和T2统计量的控制限计算 function model = kpca_train % DESCRIPTION % Kernel principal component analysis % %       mappedX = kpca_train % % INPUT %   X            Training samples %                N: number of samples %                d: number of features %   options      Parameters setting % % OUTPUT %   model        KPCA model % % % Created on 9th November, 2018, by Kepeng Qiu. % number of training samples L = size; % Compute the kernel matrix K = computeKM; % Centralize the kernel matrix unit = ones/L; K_c = K-unit*K-K*unit unit*K*unit; % Solve the eigenvalue problem [V,D] = eigs; lambda = diag; % Normalize the eigenvalue V_s = V ./ sqrt'; % Compute the numbers of principal component % Extract the nonlinear component if options.type == 1 % fault detection     dims = find) >= 0.85,1, 'first'); else     dims = options.dims; end mappedX  = K_c* V_s ; % Store the results model.mappedX =  mappedX ; model.V_s = V_s; model.lambda = lambda; model.K_c = K_c; model.L = L; model.dims = dims; model.X = X; model.K = K; model.unit = unit; model.sigma = options.sigma; % Compute the threshold model.beta = options.beta;% corresponding probabilities [SPE_limit,T2_limit] = comtupeLimit; model.SPE_limit = SPE_limit; model.T2_limit = T2_limit; end复制代码2. KPCA的测试过程: (1)获取测试数据(工业过程数据需要利用训练数据的均值和标准差进行标准化处理) (2)计算核矩阵 (3)核矩阵中心化 (4)计算非线性主成分(即降维结果或者特征提取结果) (5)SPE和T2统计量的计算 function [SPE,T2,mappedY] = kpca_test % DESCRIPTION % Compute the T2 statistic, SPE statistic,and the nonlinear component of Y % %       [SPE,T2,mappedY] = kpca_test % % INPUT %   model       KPCA model %   Y           test data % % OUTPUT %   SPE         the SPE statistic %   T2          the T2 statistic %   mappedY     the nonlinear component of Y % % Created on 9th November, 2018, by Kepeng Qiu. % Compute Hotelling's T2 statistic % T2 = diag)*model.mappedX'); % the number of test samples L = size; % Compute the kernel matrix Kt = computeKM; % Centralize the kernel matrix unit = ones/model.L; Kt_c = Kt-unit*model.K-Kt*model.unit unit*model.K*model.unit; % Extract the nonlinear component mappedY = Kt_c*model.V_s; % Compute Hotelling's T2 statistic T2 = diag)*mappedY'); % Compute the squared prediction error SPE = sum.^2,2)-sum; end复制代码 3. demo1: 降维、特征提取 源代码 % Demo1: dimensionality reduction or feature extraction % ---------------------------------------------------------------------% clc clear all close all addpath) % 4 circles load circledata % X = circledata; for i = 1:4     scatter:250*i,1),X:250*i,2))     hold on end % Parameters setting options.sigma = 5;   % kernel width options.dims  = 2;   % output dimension options.type  = 0;   % 0:dimensionality reduction or feature extraction                      % 1:fault detection options.beta  = 0.9; % corresponding probabilities options.cpc  = 0.85; % Principal contribution rate % Train KPCA model model = kpca_train; figure for i = 1:4     scatter:250*i,1), ...         model.mappedX:250*i,2))     hold on end 复制代码(2)结果 (分别为原图和特征提取后的图) demo1-1.png demo1-2.png 4. demo2: 故障检测(需要调节核宽度、主元贡献率和置信度等参数来提高故障检测效果) (1)源代码 % Demo2: Fault detection % X: training samples % Y: test samples % Improve the performance of fault detection by adjusting parameters % 1. options.sigma = 16;   % kernel width % 2. options.beta          % corresponding probabilities % 3. options.cpc  ;        % principal contribution rate % ---------------------------------------------------------------------% clc clear all close all addpath) % X = rand; Y = rand; Y = rand 3; Y = rand*3; % Normalization % mu = mean; % st = std; % X = zscore; % Y = bsxfun,st); % Parameters setting options.sigma = 16;   % kernel width options.dims  = 2;   % output dimension options.type  = 1;   % 0:dimensionality reduction or feature extraction                      % 1:fault detection options.beta  = 0.9; % corresponding probabilities options.cpc  = 0.85; % principal contribution rate % Train KPCA model model = kpca_train; % Test a new sample Y [SPE,T2,mappedY] = kpca_test; % Plot the result plotResult; plotResult; 复制代码(2)结果(分别是SPE统计量和T2统计量的结果图) demo2-1.png demo2-2.png    附件是基于KPCA降维、特征提取和故障检测程序源代码。如有错误的地方请指出,谢谢。 Kernel Principal Component Analysis .zip KPCA
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

中南自动化学院至渝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值