二阶电路的时域分析
一、二阶电路的零输入响应分析
我们以电容具有初始值;电感初始值为零的情况分析如下电路
电容的初始状态为 uC(0+) = U0 电感的初始状态为 iL(0+)=0
由KVL、元件VCR,可得到以电容电压为变量的电路微分方程为
换成标准形式【其实就是换成 二阶常系数齐次微分方程】
- 其中 衰减系数为:
- RLC串联电路的谐振角频率:
然后求一下特征方程和特征根【这个特征根就是配方-移项求得的】
然后就需要讨论 a 与 w0 的关系;这个就是看这个电路能不能振荡起来的一个条件;一个有三种情况
-
阻尼电阻:阻尼电阻与电路的动态元件参数、电路结构有关,与电路的激励和初始状态无关。
-
1. a > w0 :过阻尼
表明电容一直在释放能量;释放的能量一部分会给电感,电感处于吸收能量状态,即电容释放的能量一部分被电阻消耗,一部分存储于电感;过一段时间后电感储存的能量,电感、电容同时释放的能量均被电阻消耗,最后释放完
- 2. a = w0 :临界阻尼
波形类似于上图所示波形,仍然无振荡变化过程。然而,这个过程是振荡和非振荡过程的分界线,所以称为临界阻尼过程。
- 1 . a < w0 :欠阻尼
上所示波形看出,与过阻尼情况不同,欠阻尼情况下,电容电压 uc(t) 的变化呈衰减振荡趋势,是一个衰减振荡的放电过程。这是由于电阻R值较小,在电容放电(释放能量)的过程中,能量仅被电阻消耗小部分,大量的能量被另一储能元件电感转换为磁场能量储存,当电容储能为零时,电感又开始释放能量,电容被反向充电,又进行电能的储存,如此反复。在电路的动态元件进行周期性的能量交换的过程中,电阻R每次都要消耗一部分能量,使得电容的初始储能在电容与电感周期性的能量交换中被消耗殆尽。
当电路中R=0时,电路初始储能不会被消耗,只会在电容和电感间进行电场储能和磁场储能的不断相互转换,永无休止,成为无阻尼等幅振荡 过程。其响应波形和能量的转换如图所示。
经典例题: